范文资料网>反思报告>教案大全>《五年级数学教案解简易方程

五年级数学教案解简易方程

时间:2024-04-03 18:10:29 教案大全 我要投稿
  • 相关推荐

五年级数学教案解简易方程

  作为一无名无私奉献的教育工作者,就有可能用到教案,借助教案可以让教学工作更科学化。教案应该怎么写呢?下面是小编为大家收集的五年级数学教案解简易方程,希望对大家有所帮助。

五年级数学教案解简易方程

五年级数学教案解简易方程1

  教学目标

  1.使学生初步理解“方程”“方程的解”和“解方程”的含义。

  2.初步掌握解简易方程的方法并会检验。

  教学重点

  使学生初步掌握解方程的方法和书写格式。

  教学难点

  帮助学生建立“方程”的概念,并会应用。

  教学步骤

  一、铺垫孕伏

  1、口算下面各题

  2、写出下面各题的式子

  (1)一个足球元,3个足球多少元?

  (2)减3的差。

  二、探究新知

  (一)教学方程的意义

  1、出示天平:(教师向学生介绍)这是一架天平、可以用来称物品的重量。当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等。

  2、介绍等式:在天平的两边上重量相等的物体,左边放20克砝码和30克砝码,右边放50克砝码。请学生观察。

  教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

  (这时天平平衡,说明了天平左右两边的重量相等,等式为)

  教师说明:这是一个等式,等号的左边和右边相等。

  3、引出方程。(改变天平上的物品和砝码)

  教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示,请同学们试一试。()

  教师说明:这个未知数“?”,如果用来表示就可以写成。

  教师提问:这个等式和上面的等式有什么不同?(这个等式含有未知数“”)

  4、列出含有未知数的等式:(出示第三幅图)

  教师提问:

  (1)这幅图是什么意思?

  (2)每个篮球的价钱是元,3个篮球多少元,怎样用式子表示?(3)

  (3)3个篮球是234元,怎样用含有未知数的等式表示?

  教师板书:

  5、总结方程的意义。

  教师提问:观察上面三个等式回答问题。这三个等式有什么相同点和不同点?

  相同点:都是相等的式子。

  不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数

  教师板书:象这种含有未知数的等式,叫方程.

  6、举例说明什么叫方程。

  强调两点:一:含有未知数

  二:等式

  7、方程与等式的联系与区别,方程与等式之间是什么关系呢?(学生讨论)

  小结:所有的.方程都是等式,所有的等式不一定都是方程,含有未知数的等式是方程,不含未知数的等式不是方程。

  (二)教学方程的解和解方程

  1、教师提问:在中,等于多少时方程左边和右边相等?

  (时方程左边和右边相等)

  在中,等于多少时方程的左边和右边相等?

  (时方程的左边和右边相等)

  2、教师引导:使方程左右两边相等的未知数的值,叫做方程的解。

  谁是方程的解?(是方程的解)

  谁是方程的解?(是方程的解)

  3、30是上面方程的解吗?为什么?

  (30不是上面方程的解,因为它不能使方程左右两边相等)

  4、引导学生说明:,是怎样求出来的?

  教师板书:求方程的解的过程叫做解方程。

  5、例1解方程-8=16

  教师提问:

  (1)解方程先写什么?等号怎样写?(先写解,等号要对齐)

  (2)根据什么计算?

  (3)怎样检查解方程是否正确?

  教师板书:

  解:根据被减数等于减数加差

  检验:把代入原方程,左边,右边

  左边=右边

  所以是原方程的解。

  6、讨论:“方程的解”和“解方程”有什么区别?

  三、课堂小结

  今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

  四、巩固练习

  1、填空

  (1)含有未知数的()叫做方程。

  (2)使方程左右两边相等的(),叫做方程的解。

  (3)求方程的解的()叫解方程。

  (4)下面的式了中是等式的有();

  是方程的有()。

  2、判断,对的在括号里打√,错的打×。

  (1)等式都是方程。()

  (2)方程都是等式。()

  (3)是方程的解。()

  (4)也是方程。()

  3、选择正确答案填在括号内

  (1)的解是()

  ,(2)的解是()

  ,(3)这个式子是()

  是方程是等式既是方程又是等式

  (4)是方程()的解

  五、布置作业

  练习二十四4题。

  六、板书设计

  解简易方程

  含有未知数的等式叫做方程。例方程左右两边相等的未知数的值,叫做方程的解。

  求方程的解的过程叫做解方程。

  例1解方程

  解:根据被减数等于减数加差

  检验:把代入原方程,左边,右边,所以是原方程的解。

  教学设计示例

五年级数学教案解简易方程2

  教学目的:

  使学生初步学会ax±bx=c这一类简易方程的解法,培养学生分析、推理能力和思维的灵活性。

  教具准备:

  教学过程:

  一、复习。

  投影出示复习题:

  (1)2x=24.42x+10=24.4

  (2)2x+2×5=24.42x-2×5=24.4

  每做完一题,让学生说一说解题的根据是什么。

  二、新授。

  1.教学例5。

  小黑板出示一道一般应用题:一个工地用汽车运土,每辆车运5吨。一天上午运了4车,下午运了3车。这一天一共运土多少吨?

  请一名学生读题,投影片出示下图。

  指名学生说出题里的已知条件,然后学生在练习本上独立解答。做完后,根据学生回答板

  解法一:5×4+5×3解法二:5×(4+3)

  问:如果每辆车运5.5吨该怎样解答呢?(将图中的5吨改为5.5吨。)

  板书:解法一:5.5×4+5.5×3

  解法二:5.5×(4+3)

  问:如果每辆车运x吨该怎样解答呢?(将图中的5吨改为x吨。)

  根据学生回答板书:

  解法一:x×4+x×3

  解法二:x×(4+3)

  师:省略乘号,x×4+x×3写成4x+3x;

  x×(4+3)写成(4+3)x

  板书:解法一:4x+3x解法二:(4+3)x

  问:那么4x+3x的计算结果是多少呢?我们观察一下图上的内容,结合上面的两种解法,想一想4x表示什么?(表示4个x。)3x表示什么?(表示3个x。)4x+3x就是(4+3)个x,也就是7x。所以4x+3x=7x。这一天一共运了7x吨。

  问;在上面的计算中,4x+3x=(4+3)x实际应用了什么定律?(乘法的分配律)

  想一想,如果我们把问题改成“上午比下午多运多少吨?该怎样列式?(指名学生列出算式:4x-3x或(4-3)x。4x-3x计算结果是多少呢?(引导学生思考:4个x减3个x就是(4-3)个x,所以4x-3x=x。这一天上午比下午多运x吨。)

  指导看书,课本第113页例5。

  2、课堂练习。

  (1)P113”做一做“

  着重讨论:如:7b+b就是7个b加1个b,等于(7+1)个b,是8个b即8b)

  (2)练习二十八第1题。着重讨论b-0.4b=0.6b

  3、教学例6。

  投影出示:

  让学生认真观察图上的内容,看图列方程。指名学生回答,教师板书:7x+9x=80

  学生在练习本上做,教师巡视,发现问题,及时纠正。指名学生说一说解题过程,教师根据学生回答板书,再让学生说一说检验过程。

  指导看书,课本114页,例6。

  4.课堂练习。

  教科书114页”做一做“。

  5.小结。

  我们今天学习的解方程与以前的.有什么不同?(相加或相减的两个数都含有未知数x。)解这样的方程应怎样做呢?(运用乘法分配律,把未知数前面的数先加、减,得出一个含有未知数的数,再求出未知数x的值。)

  三、巩固练习。

  做练习二十八第2题第一栏,第3、4题。

  课后小结:

五年级数学教案解简易方程3

  教学内容:

  解简易方程例2和例3(课本第109页)练习二十七第1一4题

  教学目的:

  1.理解和掌握形如aX±b=c的简易方程的转化思路。

  2.能正确地解答并掌握检验的方法,提高解题的正确率。

  3.培养严谨的学习态度,养成良好的学习习惯。

  一、复习

  1.什么叫做方程?什么叫做方程的'解?什么叫做解方程?

  ⒉解下列方程:

  2.5X=600.8÷X=10X-43=1000X+15=41

  教师小结:①解方程要注意格式;②要想好根据什么关系来求调;③检验应当代人原方程;④检验要认真,不能走过场。

  二、新授

  1.揭示新课内容,板书课题:解简易方程

  2.例2的教学

  看图列方程,并求出方程的解。(图略)

  (1)先让学生看清图意并根据图意列出方程:

  3X+4=40

  (2)讨论一下解法:

  解:把3x看作一个加数

  3x=40一4

  3x=36

  x=36÷3

  x=12

  检验:把x=12代人原方程

  左边=3×l2+4=36+4=40

  右边=40

  左边=右边

  所以x=12是原方程的解。

  (4)小结一下,刚才我们是怎样化难为易的。(同桌互相交流一下思路。)

  (5)下列各方程先写出你的第一步转化方案,暂不往下解:

  ①3.6+2x=11.8②13.5一2x=11.8③6x一11=36

  集体订正后,师简评。

  3.例3的教学

  解方程6×3一2x=5

  (1)分析:这题与上题比较,怎样?

  按照四则混合运算顺序,可以先算6×3的积吗?

  (2)思路理清,可由学生自行解题,指定二生板演,余在练习本上解答。

  解:18一2x=5.........先求积

  把2x看作减数

  2x=18一5

  2x=13

  x=13÷2

  x=6.5(口头检验)

  4.总结、师生共同进行,最后由师总结板出:

  解答形如ax±b=c的方程,把ax看作一个数,分析这个数的解题依据进而转化为ax=b型的方程再求解是我们这节课解决问题的关键。

  三、巩固练习

  第一个层次练习:完成课上2的⑤中三道方程的解题,集体订正后,转入练习二十六的第2题。

  这个层次的练习要点是训练解题程序。(强化转化的思路规范的练习。)

  师讲评:知道对谁转化,还要仔细琢磨一下根据哪个关系进行怎样的计算,因此对四则计算的相互关系应熟练在胸。

  第二层次练习:要求正确、熟练地解题。

  独立完成练习二十六的第1、3两题的左列各题。

  师评讲。

  四、全课总结

  复杂的方程的解法,关键是什么?(议一议)

  作业设计

  一、完成练习二十六第1J题的右列各题和第4题。

  二、解下列各方程。

  ⑴要求写出解题的根据

  x+15=41x一430=1289十x=600.98一x=0.7

  6x=7.8x÷16=40.8÷x=10x÷4.5=12

  ⑵要求写出转化的思路说明,并检验。

  ①6x+3=9②4x一2=10③5x一39=56

  ④15一2x=7⑤12.5一6x=2.9⑥4.8+0.5x=6.3

  ⑦3x一4×6=48⑧9×3一1.7x=13.4⑨7x+12×5=102

  (3)用方程表示下面的数量关系,并求出方程的解:

  ①x加上85等于91,求x。

  ②x减去1.5等于3.7,求x。

  ③62减去x等于6,求x。

  板书设计:

  解简易方程

  例23X+4=40例36×3-2X=5

五年级数学教案解简易方程4

  教学目标

  1.使学生初步理解方程方程的解和解方程的含义.

  2.初步掌握解简易方程的方法并会检验.

  教学重点

  使学生初步掌握解方程的方法和书写格式.

  教学难点

  帮助学生建立方程的概念,并会应用.

  教学设计

  一、复习准备

  (一)口算下面各题.

  30+=50 2=10

  (二)列式.

  1.一支钢笔 元,2支钢笔多少元?

  2. 与4的和.

  二、新授教学

  (一)方程的`意义

  1.介绍天平

  这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.

  2.引出方程

  (1)出示图片:天平1

  教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

  (2)出示图片:天平2

  教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

  教师板书:20+?=100

  教师说明:这个未知数?,如果用 来表示就可以写成20+ =100.

  (3)出示图片:篮球

  教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

  教师板书:

  3.方程的意义.

  教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?

  相同点:都是相等的式子.

  不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.

  教师板书:象这种含有未知数的等式,叫方程.

  教师强调:含有未知数、等式

  4.思考:方程和等式之间到底是什么关系呢?

  (1)出示图片:等式与方程

  (2)小结:所有的方程都是等式,但是等式不一定都是方程.

  (二)教学例1

  1.方程的解

  教师提问:在 中, 等于多少时方程左边和右边相等?

  在 中, 等于多少时方程的左边和右边相等?

  教师说明:使方程左右两边相等的未知数的值,叫做方程的解.

  如: 是方程 的解

  是方程 的解

  2.解方程

  教师板书:求方程的解的过程叫做解方程.

  3.教学例1

  例1.解方程 -8=16

  (1)教师提问:解方程先写什么?根据什么计算?

  (2)教师板书:

  解:根据被减数等于减数加差

  (3)怎样检查解方程是否正确?

  检验:把 代入原方程,

  左边 ,右边

  左边=右边

  所以 是原方程的解.

  4.讨论:方程的解和解方程有什么区别?

  三、课堂小结

  今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

  四、巩固练习

  (一)填空

  1.含有未知数的叫做方程.

  2.使方程左右两边相等的,叫做方程的解.

  3.求方程的解的叫解方程.

  4.下面的式了中是等式的有;

五年级数学教案解简易方程5

  教学要求:

  使学生进一步掌握用字母表示数,求含有字母的式子的值,以及解含有二、三步计算的简易方程的方法,并能正确地设未知数列方程解文字叙述题。培养和提高学生分析、推理及解方程的能力。

  教学步骤:

  一、基础训练

  1.教材第116页练习二十八第8题。

  2.教材第116页练习二十八第6题。

  二、练习指导

  1.揭示课题,巩固练习(板书)。

  2.指导练习。

  (1)解方程,请说明解题思路:

  ①4x一2.5=1.1

  ②17+x一5=18

  ③12×15一4x=112

  ④6.2x一3.5x=54

  ⑤x+0.36x=13.6

  ⑥5x+7x一3=9

  让学生观察思考,进行讨论:

  题①把4x看作一个被减数进行转化得出:4x=1.1+2.5

  题②可把17+x看作一个被减数转化为:17+x=18+5

  题③先整理后得180一4x=112,再把4x看成一个减数转化。

  题④先求出剩下的X的个数把左边式子化简即可转化为最简单的方程:2.7X=54。

  题⑤先求共有几个X,把左边化简得:1.36X=13.6(X表示1x即1个X)

  题⑥先处理左边为12x一3=9,再把12x看作被减数进行转化。

  通过以上多种转化方法的实施,最终都使一个多步的方程转为最简单的一步方程。这就是解方程的基本思路。

  (2)教材116页练习二十八:

  ①第7题,每小题要求把x的值代人两个式子分别求出数值,再同①右边的数比较大小。练习时可以先以第1小题第一个式子为例,让学生说说解题方法及思考过程,其余的让学生独立完成。

  ②第9题,题目的问法具有一定的实际意义,解题方法也比较灵活。有助于培养学生灵活运用所学的`知识解决简单实际问题的能力。

  “算出了什么就能知道能不能按时完成任务?”教师可引导学生独立思考,这道题有哪些不同的解决方法,要鼓励学生想出不同的方法,然后共同讨论,订正:

  解法一:可求出实际完成任务的天数,再和计划天数比较。

  1200÷(560÷16)≈34.3天,34.3<40,说明能按时完成任务。

  解法二:可以分别求出计划的日产量和实际的日产量,然后加以比较。

  1200÷40=30560÷16=3530<35,说明能按时完成任务。

  解法三:先求出实际日产量,然后乘以40,得出的积与计划产量比较。

  560÷16×40=1400个1400>1200,说明能按时完成任务。

  ③第10题,培养学生“发散性”思维,答案多种多样,且有无数种。对能动脑筋编出二、三步运算方程的学生要给予表扬。对中差生可引导他们参照已学过的类型编,并要求学生通过检验,判别所编的方程是否符合要求。

  ④第11题。“填人相同的数”,只要把□换成X,就很容易求解。从而使学生体会到用字母表示数,便于分析问题和解决问题。

  ⑤第12题:方程两边都出现了X,怎么求解?借助天平平衡的图示,容易想到:两边各拿走一个“X”,可得到2X=100求解。也可把等号右边看作两个加数,根据和减去一个加数得另一个加数,得3X一X=100,再求解。

  三、课堂练习

  教材第115一116页练习二十八第5、6题。

  作业辅导

  1.教材116页练习二十八第7、9、10、11、12题。

  2.找一找右边的方程是从左边到右边的哪个方程转化而来的,把它们用线连起来。

  4x十5=197x=13十8

  7x一8=134X=19一5

  1.3x÷3=2.65x=1÷8

  1÷5x=81.3x=2.6×3

  2.5×4一4x=14.8÷x=6.6+3

  4.8÷x一3=6.64x=2.5×4一1

  0.7x+3x=7.43x=12+3

  5x一2x一3=123.7x=7.4

  3.一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米?

  先用算术方法解答:

  如果设每件儿童衣服用布x米,完成下列方程:

  +=36

  板书设计:

  解简易方程

  依次出示各习题

  教后感:

五年级数学教案解简易方程6

  首先,我对本节教材进行一些分析:

  一、教材分析:

  教材所处的地位和作用:

  本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

  从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。这为过渡到下节的学习起着铺垫作用。

  从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识。

  二、教育教学目标:

  根据本节课的地位和作用,依据教学大纲,以及学生已有的认知结构心理特征,我制定了如下目标:

  (1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  (2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力。

  (3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

  这三个目标将为后面的教学起到一个导向作用。

  三、重点与难点:

  那么根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,所以我认为这节课的重点是:

  (1)重点:理解方程的解和解方程的含义。

  另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的,所以我认为这节课的难点是:

  (2)难点:掌握解方程的方法。

  五、教学过程:

  下面,对于如何突出重点,突破难点,从而实现教学目标,在教学过程中拟定计划进行如下操作:(1、复习铺垫;2、探究新知;3、例题解析;4、巩固练习;5、归纳小结;6、布置作业。)六个步骤

  1.复习铺垫:

  (1)抛出问题:

  师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  提问的目的:让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

  (2)判断下面哪些是方程:

  师:你能判断下面哪些是方程吗?

  (1)a+24=73(2)4x<36+17(3)234÷a>12

  (4)72=x+16(5)x+85(6)25÷y=0.6

  生:(1)(4(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式)

  这样做的目的:在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

  理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的`基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  2、探究新知

  (1)、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(看书上57页天平图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  这样做的目的:运用知识迁移,结合直观图例,应用方程的性

  质,让学生自主探索列出方程。

  (2)、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  目的:这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

  (3)、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们翻到课本57页,(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)勾上这两句话并齐读三遍。

  这样做的目的:学生齐读的时候,我可以把解方程和方程的解的概念板书在黑板上,并且,在学生读的过程中学生可以加深印象。

  (4)辨析方程的解和解方程两个概念

  师:方程的解是未知数的值,它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

  3、例题解析

  师:前几天我们学习了等式的性质,今天我们又学习了请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8()

  (2)如果50-13=37,那么50-13+13=50()

  (3)如果a-7=8,那么a-7+7=8()

  (4)如果X+9=45,那么X+9-9=45()

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

  生:X+3=9

  师:这个方程用天平怎么表示呢?

  生:天平左边放X个和3个球,右边放9个球。(电脑显示)

  4、引导学生思考怎样解方程。

  师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

  生:天平两边同时减去3个球。(电脑显示)

  师:天平两边还平衡吗?怎样反映在方程上呢?

  生:方程两边同时减3。(结合学生回答板书)

  师:为什么同时减3而不是其它数呢?

  生:方程两边同时减3就可以使方程一边只剩X。

  5、检验方程的解。

  师:X=6是不是方程的解呢?

  生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

  6、强调解方程的格式步骤

  电脑显示:解方程要注意:

  (1)先写“解”,等号要对齐。

  (2)做完后要注意检验。

  2.学情分析:

  (1)学生特点分析:积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  三、教学程序及设想:

  (1)引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。抛出问题,什么叫方程?什么是方程的性质?让学生回忆上节课内容,引出方的解、解方程的定义。揭示课题:这节课我们就利用等式的性质来解简易方程。

  (2)由例题得出本课新的知识点:

  解方程:X+6=7.8;X-6=7.8;6X=7.8;X÷6=7.8。

  讲解例题。说明在方程的两边什么情况应该同时加,什么情况该同时减,什么情况该同时乘,什么情况该同时除?在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (3)接下来,我们用今天学习的知识解决实际问题。

  出示情景图:

  X元X元X元

  18元

  提问:从图中你知道了哪些信息?会列方程吗?然后说出图意并列出方程。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  ①列出方程并解答:每个福娃X元,买5个共花80元。

  ②看题回答:1.6X=6.4(要解这个方程,方程两边应同时?)

  (看来解法掌握得不错,下面看谁的反应最快。)

  ①选择正确答案,说说你是怎样判断的?

  X+8=30的解是()A.X=22B.X=38

  0.3X=0.21的解是()A.X=7B.X=0.7

  X=5是方程()的解。A.15X=3B.6X=30

  X=30是方程()的解。A.0.2X=6B.2X=15

  (5)总结结论:知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(这节课学习了什么?解简易方程的依据和方法是什么?)

  *(6)变式延伸:针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高进行重构,适当对题目进行引申,使教学的作用更加突出,有利于优等学生对知识的串联,累积,加工,从而达到举一反三的效果。(对有能力接受的学生)

  (7)板书:略

  (8)布置作业。P66第5—7题。

五年级数学教案解简易方程7

  教学目标

  1、使学生初步学会这一类简易方程的解法。

  2、知道计算这类方程的道理。

  教学重点

  掌握解这一类方程的解法。

  教学难点

  理解这一类方程的算理。

  教学步骤

  一、铺垫孕伏

  1、口头解下列方程

  2、用字母表示乘法分配律

  二、探究新知

  (一)教学例5一个工地用汽车运土,每辆车运吨,一天上午运了4车,下午运了3车。这一天共运土多少吨?

  1、读题,理解题意。

  2、出示例5挂图,引导学生观察。

  3、提问:通过观察这幅图,你都知道了什么?

  (知道上午运土的吨数,下午运土的吨数,可以求一天运土的.吨数。)

  4、要求学生分别用式子表示出来

  教师板书:

  上午下午一天

  5、教师说明:这个式子中含有两个未知数,这就是今天要学习的解简易方程(三)

  6、这个式子怎样计算呢?(学生分组讨论)

  (1)表示4个,表示3个,一共是个,也就是。

  (2)可以根据乘法分配律把4和3相加,就是个。

  7、教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的。

  教师板书:

  答:这一天共运土吨。

  8、思考:上午比下午多运的吨数是多少?怎样列式?

  提示:1个,可以写成。“1”可以省略不写。

  9、小结:一个式子中如果含有两个的加减法,可以根据乘法分配律和式子所表示的意义,将前面的因数相加或相减,再乘,计算出结果。

  10、练习:

  (二)教学例6解方程

  1、观察这个方程有什么特点?(这个方程等号左边含有两个)

  2、应该怎样解答?(先计算等号左边的)

  3、学生独立解答,教师个别指导。

  教师板书:

  例6解方程

  解:

  检验:把代入原方程。

  左边,右边,左边=右边

  所以是原方的解。

  4、练习解方程3.6-0.9=5.4

  三、课堂小结

  今天这节课你学到了哪些知识?解这类方程时要注意什么?

  四、巩固练习

  1、填空

  (1)表示()加(),一共是()个,得()

  (2)表示()减(),是()个,得()

  (3)()

  2、直接写得数

  3、判断正误,对的画“√”,错的画“×”

  (1)()

  (2)()

  (3)()

  4、用线段把下面每个方程与它的解连起来

  +13=33=0

  3-=80=10

  1.8=54=20

  6.7-60.3=6.7=30

  9+=0=40

  五、布置作业

  练习二十六2

  六、板书设计

【五年级数学教案解简易方程】相关文章:

《解简易方程的巩固练习》教案03-05

五年级上册《简易方程》教案03-12

人教版五年级上册《列方程解应用题》数学教案01-20

人教版五年级上册《方程的意义》数学教案01-17

解一元一次方程教案02-25

沪教版五年级下册《方程与代数》数学教案01-17

解一元一次方程教案(15篇)03-21

解一元一次方程教案15篇03-01

五年级《方程》教案03-07

《方程》教案11-26