范文资料网>反思报告>教案大全>《五年级《方程》教案

五年级《方程》教案

时间:2023-03-07 17:17:57 教案大全 我要投稿

五年级《方程》教案

  作为一位杰出的老师,时常需要编写教案,教案有助于学生理解并掌握系统的知识。那么什么样的教案才是好的呢?下面是小编为大家整理的五年级《方程》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

五年级《方程》教案

五年级《方程》教案1

  设计说明

  1.创设生活化的数学情境,激发学生的学习兴趣。

  创设生活化的数学情境,不仅可以使学生容易掌握数学知识和技能,而且可以“以境生情”,可以使学生更好地体验数学内容中的情感,使原本枯燥、抽象的数学知识变得生动形象、富有情趣。课前从学生买喜欢吃的水果入手,创设了帮助阿姨算账的数学情境,引出数学问题,使学生产生探究欲望,从而更好地进行新知的学习,感受数学与生活的密切联系。

  2.发挥主体作用,培养学生分析问题、解决问题的能力。

  课程强调以学生的发展为本,学生在教学过程中的主体地位越来越被重视。在教学中,注意安排学生独立思考与小组交流相结合,让学生自主观察情境图,了解画面信息,找出等量关系,理清解决问题的思路,小组内讲解自己的思考过程,再向全班汇报。这样既能增加学生学习的信心,又能培养学生分析问题和解决问题的能力,拓宽学生的思维。

  课前准备

  教师准备 PPT课件 学情检测卡 课堂活动卡

  学生准备 练习卡片

  教学过程

  ⊙创设情境,引入新课

  师:看,水果店里真热闹啊!顾客们忙着挑选自己喜欢吃的水果,收银台忙得不可开交。一位阿姨也买了一些水果,谁来说说她都买了什么?(课件出示教材77页例3情境图)

  师:从图中你还获得了哪些数学信息?

  师:这位阿姨想让你们帮她算算苹果每千克多少钱,你们愿意吗?

  师:这节课我们继续学习列稍复杂的方程解决生活中的实际问题。(板书课题)

  设计意图:创设生动的生活情境,激发学生主动探究的欲望,建立现实生活与数学学习的桥梁。

  ⊙探究新知

  1.教学例3。

  (1)小组交流,找出等量关系,列出方程。

  师:题中的已知条件和所求问题各是什么?

  预设 生1:已知条件是买苹果和梨各2kg,共10.4元,梨每千克2.8元。

  生2:问题是苹果每千克多少钱。

  师:这些数学信息之间存在着怎样的等量关系?你能根据等量关系列出方程并说明你的想法吗?

  预设 生1:用未知数x表示每千克苹果的.价钱。可以根据“苹果的总价+梨的总价=总价钱”这一等量关系列出方程2x+2.8×2=10.4。“2x”表示苹果的总价,“2.8×2”表示梨的总价,两者相加就是总价钱。

  生2:还可以根据“两种水果的单价总和×2=总价钱”这一等量关系列出方程(2.8+x)×2=10.4,“(2.8+x)”表示两种水果的单价总和。

  (2)解方程,总结列形如axabc的方程解决问题的步骤。

  (课件出示学生列的两个方程)

  师:仔细观察这两个方程,它们和我们上节课学习的方程有什么不同?

  师:上节课学习的是列形如ax±bc的方程,是求比一个数的几倍多几(或少几)的数是多少的问题。这节课所学的知识是根据两积之和的数量关系,列形如axabc的方程来解决问题。那么形如axabc的方程怎么解呢?请同学们小组讨论这一类型方程的解法。

  (学生先小组讨论,探究解法,再交流,最后汇报)

  预设 生1:在2x+2.8×2=10.4这个方程中,把2x看成一个整体,先算2.8×2,原方程转化为2x+5.6=10.4,根据等式的性质1,方程左右两边同时减去5.6,就转化成了我们学过的方程。

  生2:在(2.8+x)×2=10.4这个方程中,把小括号里的式子看成一个整体,也就是这个整体×2=10.4。根据等式的性质2,方程左右两边同时除以2就转化成了我们学过的方程。(师同步板书)

  师:同学们真聪明!我们可以运用转化的方法把形如axabc的稍复杂的方程转化为简单的方程,进而求出方程的解。注意求出解后别忘了检验。

  (3)比较。

  师:这两个方程之间有什么联系?小组内讨论。

  生小组内讨论后汇报:运用了乘法分配律。

五年级《方程》教案2

  教学目标:

  1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

  2、会用方程表示简单的等量关系,会列方程解决简单问题。

  3、感受式与方程在解决问题中的价值,培养初步的代数思想。

  教学重点:

  明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

  教学难点:

  找等量关系式,用方程解决实际问题。

  教学过程:

  一、导入

  我们都记得这首儿歌

  一只青蛙一张嘴,两只眼睛四条腿;

  两只青蛙两张嘴,四只眼睛八条腿;

  请你来接下句

  三只青蛙_________;

  五只青蛙呢?

  N只青蛙呢?

  一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

  二、进行复习

  1、用字母表示数

  (1)同学们想一想,在数学中有哪些地方常用字母来表示?

  生列举:数量关系(路程、速度、时间 即s=vt)

  计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

  运算定律(加法结合律:a+b+c=a+(b+c)等)

  (2)请同桌之间相互举两个这样的例子。

  (3)你们知道为什么用字母表示数吗?

  (4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的'意义。

  (5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

  算法有两种:其一:算术方法:160÷(5+3)=20

  依据:总插秧数量÷时间=单位时间量

  其二:列方程:x(5+3)=160

  依据:单位时间量×时间=总插秧数量

  观察比较:以上两种解法有哪些相同点和不同点?

  相同点:都是根据数量间的相等关系列式。

  不同点:解法一:以已知推出未知,是算术法。

  解法二:把未知数用x表示,列出含有未知数的等式,即方程。

  同学们想一想,等式和方程有什么联系和区别?

  方程有哪些性质呢?(等式 、含有未知数)

  2、方程

  (1)判断下列哪些是方程(说明理由)

  7+8=3×5 4a+5b a+12=89

  4x=y 3+100>25+y 6+x=0.5×3

  (2)你会解方程吗?从中选择一个试一试。

  (3)如何判断方程的解是否正确?

  (4)列方程解应用题的解题步骤是怎样的?

  讨论后得出:①弄清题意,找出未知数,并用x表示;

  ②找出应用题中数量之间的相等关系,列方程;

  ③解方程;

  ④检验,写出答案。

  3、列方程解决问题

  (1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

  请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

  引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

  (2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

  (3)练习

  ①练一练1

  ②师展示习题:说出下面每组数量之间的相等关系。

  (1)女生人数,男生人数,全班人数;

  (2)苹果的重量,梨的重量,梨比苹果少的重量。

  (3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

  (4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

  ③课本练一练5

  三、小结

  说一说你今天的收获在哪里?

五年级《方程》教案3

  练习内容:

  练习三十第10~18题。

  练习要求:

  使学生能根据应用题的具体情况灵活选用算术解法或方程解法,培养学生灵活运用知识的能力。

  练习重点:

  分析题目中数量关系的特点,恰当地选择解题方法。

  练习过程:

  一、基本练习

  1.解方程。

  (1)3(x+2.1)=6.9(2)4x+5×6=94

  (3)0.5×8-l0x=3.5(4)32x-7x-x=360

  2.列出方程,并求出方程的解。

  (1)一个数减去3.5的4倍,差是25,求这个数。

  (2)比1.8的5倍多z的数是12,求x。

  (3)1.8比某数的2倍少0.6,求某数。

  二、指导练习

  1.练习三十第11题

  ⑴学生独立解答后,集体订正。

  ⑵订正时,让学生说一说是根据什么等量关系式列的方程(是根据买2个足球的钱+买25根跳绳的钱=192.5元)

  ⑶设每根跳绳x元,25根就是25x,每个足球80元,2个就是80×2,所列方程为:80×2+25x=192.5)。

  ⑷让学生说一说用算术方法解的思路。

  2.练习三十第13题。

  先让学生解答,如果有困难,可以稍加提示:改排前后书的`字数不变。如果有学生用方程解,可让他们说说是怎样解的,并给予表扬。同时说明这道题用方程解和用算术方法都可以。

  3.练习三十第15题。

  第16题与例5相比,增加了一个条件,因此可以列出不同的方程。如设《故事大王》的单价为x元,则可列出以下几个方程:

  4×1.6+4x+7.6=20,

  20-4×(1.6+x)=7.6,

  4x=20-4×1.6-7.6

  鼓励学生列出不同的方程,然后可以讨论哪个简便。

  4.16题是例4和例6的综合。可以根据例6的思路,先列出杏树棵数。在列方程时,用含有x的式子来表示桃树的(x+20),又要用到例4的知识,这也是解答本题的关键。

  5.练习三十二第18题。

  17题是例5和例6的综合。可以先设乙汽车每小时行x千米,列出类似于例5的方程:4x+4×2x=480或4X(x+2x)=480;也可以列出类似于例6的方程:x+2x=480÷4。

  三、课堂练习

  练习三十二第10、12、14、15题。

五年级《方程》教案4

  首先,我对本节教材进行一些分析:

  一、教材分析:

  教材所处的地位和作用:

  本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

  从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。这为过渡到下节的学习起着铺垫作用。

  从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识。

  二、教育教学目标:

  根据本节课的地位和作用,依据教学大纲,以及学生已有的认知结构心理特征,我制定了如下目标:

  (1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  (2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力。

  (3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

  这三个目标将为后面的教学起到一个导向作用。

  三、重点与难点:

  那么根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,所以我认为这节课的重点是:

  (1)重点:理解方程的解和解方程的含义。

  另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的,所以我认为这节课的难点是:

  (2)难点:掌握解方程的方法。

  五、教学过程:

  下面,对于如何突出重点,突破难点,从而实现教学目标,在教学过程中拟定计划进行如下操作:(1、复习铺垫;2、探究新知;3、例题解析;4、巩固练习;5、归纳小结;6、布置作业。)六个步骤

  1.复习铺垫:

  (1)抛出问题:

  师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  提问的目的:让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

  (2)判断下面哪些是方程:

  师:你能判断下面哪些是方程吗?

  (1)a+24=73(2)4x<36+17(3)234÷a>12

  (4)72=x+16(5)x+85(6)25÷y=0.6

  生:(1)(4(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式)

  这样做的目的:在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

  理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  2、探究新知

  (1)、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(看书上57页天平图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  这样做的目的:运用知识迁移,结合直观图例,应用方程的性

  质,让学生自主探索列出方程。

  (2)、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  目的:这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

  (3)、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们翻到课本57页,(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)勾上这两句话并齐读三遍。

  这样做的目的:学生齐读的时候,我可以把解方程和方程的解的概念板书在黑板上,并且,在学生读的过程中学生可以加深印象。

  (4)辨析方程的解和解方程两个概念

  师:方程的解是未知数的值,它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的`解。同学们要注意两个概念之间的区别与联系。

  3、例题解析

  师:前几天我们学习了等式的性质,今天我们又学习了请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8()

  (2)如果50-13=37,那么50-13+13=50()

  (3)如果a-7=8,那么a-7+7=8()

  (4)如果X+9=45,那么X+9-9=45()

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

  生:X+3=9

  师:这个方程用天平怎么表示呢?

  生:天平左边放X个和3个球,右边放9个球。(电脑显示)

  4、引导学生思考怎样解方程。

  师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

  生:天平两边同时减去3个球。(电脑显示)

  师:天平两边还平衡吗?怎样反映在方程上呢?

  生:方程两边同时减3。(结合学生回答板书)

  师:为什么同时减3而不是其它数呢?

  生:方程两边同时减3就可以使方程一边只剩X。

  5、检验方程的解。

  师:X=6是不是方程的解呢?

  生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

  6、强调解方程的格式步骤

  电脑显示:解方程要注意:

  (1)先写“解”,等号要对齐。

  (2)做完后要注意检验。

  2.学情分析:

  (1)学生特点分析:积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  三、教学程序及设想:

  (1)引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。抛出问题,什么叫方程?什么是方程的性质?让学生回忆上节课内容,引出方的解、解方程的定义。揭示课题:这节课我们就利用等式的性质来解简易方程。

  (2)由例题得出本课新的知识点:

  解方程:X+6=7.8;X-6=7.8;6X=7.8;X÷6=7.8。

  讲解例题。说明在方程的两边什么情况应该同时加,什么情况该同时减,什么情况该同时乘,什么情况该同时除?在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (3)接下来,我们用今天学习的知识解决实际问题。

  出示情景图:

  X元X元X元

  18元

  提问:从图中你知道了哪些信息?会列方程吗?然后说出图意并列出方程。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  ①列出方程并解答:每个福娃X元,买5个共花80元。

  ②看题回答:1.6X=6.4(要解这个方程,方程两边应同时?)

  (看来解法掌握得不错,下面看谁的反应最快。)

  ①选择正确答案,说说你是怎样判断的?

  X+8=30的解是()A.X=22B.X=38

  0.3X=0.21的解是()A.X=7B.X=0.7

  X=5是方程()的解。A.15X=3B.6X=30

  X=30是方程()的解。A.0.2X=6B.2X=15

  (5)总结结论:知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(这节课学习了什么?解简易方程的依据和方法是什么?)

  *(6)变式延伸:针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高进行重构,适当对题目进行引申,使教学的作用更加突出,有利于优等学生对知识的串联,累积,加工,从而达到举一反三的效果。(对有能力接受的学生)

  (7)板书:略

  (8)布置作业。P66第5—7题。

五年级《方程》教案5

  教材简析

  这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。

  本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。

  教学目标

  1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。

  2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。

  3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。

  教学过程

  一、创设情境 激趣导入

  谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)

  我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。

  【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。

  二、合作探究 获取新知

  1、找出白鳍豚这组资料的等量关系,用字母表示。

  (1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?

  白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。

  (2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。

  (3)先自己写一写,再与小组内的同学交流。

  20xx年只数 + 300只=1980年只数

  1980年只数 - 20xx年只数=300只

  1980年只数-300只=20xx年只数

  (4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。

  学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。

  (5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。

  【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。

  2、借助天平理解等式的意义。

  根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)

  像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)

  (1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)

  (2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。

  提问:你发现了什么?你能想办法让天平平衡吗?

  右盘加上50克的砝码,天平平衡了。

  (3)天平左盘放入10克砝码,右盘放入20克砝码。

  提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)

  提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?

  10+10=20(板书)

  (4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。

  谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。

  20+x=50(板书)

  (5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。

  要求:用等式表示出天平左右两边的关系。

  50+50=100 4x=200(板书)

  (6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。

  【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。

  3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

  (1)提问:继续看大熊猫的资料,你获得了哪些信息?

  20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。

  (2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?

  师生总结:

  您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数

  10x=1600

  如果用x表示人工养殖大熊猫的只数,那么x10=1600

  (3)学生打开教科书57页,结合图示进一步理解以上等量关系。

  【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。

  4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

  (1)提问:继续看东北虎的资料,你获得了哪些信息?

  预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。

  (2)提问:根据以上信息你能提出什么问题?

  引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。

  (3)先自己写一写,再与小组同学交流。

  学生汇报:

  20xx年的只数3+100=20xx年的只数

  列式为: 3X+100=1000 (板书)

  画图为:天平的左盘是3个X和一个100,右盘是1000。

  提问:这里的X表示什么?(x表示20xx年的只数。)

  【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。

  5、揭示方程的.意义。

  (1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?

  引导学生分成两类:含有字母的是一类,不含字母的是一类。

  我们把含有未知数的这类等式叫做方程。(板书)

  (2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。

  (3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?

  方程必须含有未知数,还必须是等式。

  【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。

  三、巩固练习 加强应用

  1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。

  2、出示自主练习2,看图列方程。

  学生独立完成,说说自己是怎样想的。

  3、出示自主练习3,填一填。

  学生独立完成。

  【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。

  四、回顾反思 总结提升

  谈谈这节课你有哪些收获?

  总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。

  总设计意图:

  本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

  教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。

  总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。

五年级《方程》教案6

  教学目标

  1、结合具体情况,分析题目中的数量关系,解决实际问题。

  2、巩固所学知识,利用方程解决实际问题

  教学重点

  会分析数量关系,解决实际问题

  教学难点

  利用等量关系,列出方程,解决问题。

  教具准备

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、复习旧知

  1、计算练习

  2/7×4/5÷1/2

  5/9×6/15÷4/9

  (1+1/15)×10

  98÷(1/15÷2/7)

  二、练习五.2

  本题是求长方体的体积

  1、练习五、3

  本题难点是长方形的宽没有直接给出,因此需要借助题中的'信息求出长方形的宽学生进行分析题意。

  独立解决。

  2、练习五、4

  ○1引导学生读题,理解题意

  ○2鼓励学生画线段图,理解题意

  学生独立练习

  集体反馈

  学生独立计算

  学生需要借助题中的信息求出长方形的宽学生进行分析题意。

  独立解决。

  通过练习

  巩固混算的计算法则。

  通过练习,复习长方体体积的计算。

  通过教师的引导,

  教师指导与教学过程

  学生学习活动过程

  设计意图

  ○3列出算式:45-45×3/5

  或:45×(1-3/5)

  3、练习五、5

  ○1说一说本题:题意

  ○2说一说你调查和收集到的一些资料

  ○3通过计算,感到环保的重要性。

  4、练习五、6

  ○1画图分析数量关系

  ○2找到数量关系,等量关系

  ○3独立进行解答

  ○4集体订正

  二、巩固练习

  学生独立完成8、9、10题。

  集体订正

  找出题目中的重难点,帮助学生分析题意,掌握分析题意的方法,找出解题方法,学习解题方法,并且利用这些方法来解决日常生活中遇到的问题。

  板书设计:

  教学反思:

五年级《方程》教案7

  教学目标:

  1、使学生理解方程的意义,知道什么是方程的解,什么是解方程,并弄清等式与方程的关系。

  2、会判断什么是方程,会解一步计算的方程,并会检验方程的解。

  3、使学生养成良好的检查、验算习惯。

  教学重点:

  理解方程的意义。

  教学难点:

  理解等式与方程的关系。

  教学过程:

  一、创设情境

  我们学过了用字母表示数,下面用含有字母的式子表示下面各题的数量关系。(口答)

  (1)x与6的和 (2)x与4的和

  (3)20减x的5倍的差 (4)x的2倍加1. 8

  在上幼儿园的时候你都喜欢玩哪些游戏呢?

  看看这两位小朋友在做什么游戏?你想不想玩?

  那接下来我们也一起来玩一玩。

  老师有65千克(板书:65)你呢?(指名学生)

  请大家闭上眼睛想一想,当我与他坐上翘翘板两端的时候,会出现怎样的情况呢?

  那怎样就能使翘翘板平衡了呢?

  你能用一个式子把它表示吗?(板书:30+35=65,左右两边相等)

  同学们,你们在生活中见过与翘翘板相类似的物体吗?(天平)

  今天我这里有一架天平,谁能介绍一下天平的使用方法吗?(那什么时候天平就平衡了呢?当两重量相等的时候或者指针指向中间的时候。)

  你了解得的可真多!

  二、探究新知

  1、理解方程的意义

  师:这里也有两架天平也保持着平衡,你能用一个算式表示出来吗?

  (1)20+30=50 (2)20+x=100

  师:那么x是多少?(80克)这个x是固定的值。能不能随便的说?(不能)前面我们学的用字母表示数时可以表示任意的数,但这里是一个固定的值,不能表示任意的数,只能是使等式左右两边相等的'值。

  师:那么这两个算式有什么不同?(含有未知数)

  同学们,真厉害!

  前几天,学校又新买了3只篮球,(出示篮球图)共用去186元,同学们,你们能用一个等式来表示吗?(板书:3x=186)

  大家观察一下这几个等式,你能不能把它们分分类?

  30+35=65 20+x=100

  20+30=50 3x=186

  揭示方程概念:含有未知数的等式叫方程。(板书)

  2、比较等式和方程

  下面我们观察一下,它们有什么相同?什么不同?(小组讨论)

  得出相同点:都是等式,不同点:方程含有未知数

  强调:方程必备两个条件:一、含有未知数。二、等式

  谁能用这个图来表示等式和方程的关系?(小组讨论)

  谁能说说等式和方程的关系 等式

  方程

  那你能说几个方程吗?

  练习:下面哪些是方程?哪些不是方程?

  35-x=12 84÷12=7 4x-32

  49÷x=7 450x=900 69+x

  3、自学什么是解方程、方程的解

  (1)学生自学课本99页,回答下列问题:

  a:什么是方程的解?

  b:什么是解方程?

  c:方程的解和解方程一样吗?

  d:和以前学的求知数有什么关系?

  4、解方程

  下面我们一起来解方程

  例1 x-18=30 根据被减数=差+减数

  解: x=30+18

  x=48

  检验 把x=48代入原方程。

  左边=48-18=30,右边=30

  左边=右边

  所以x=48是原方程的解。

  进一步明确:方程的解和解方程

  解方程和求知数又有什么不同呢?

  三、巩固练习

  1、试一试:4x=6.4(要求写出检验过程)

  2、判断:

  (1)、含有未知数的式子叫做方程。 ( )

  (2)、方程是等式,所以等式也是方程。( )

  (3)、检验方程的解是否正确,应当把求得的解代入原方程。( )

  (4)、x=36是方程x÷3=12的解。 ( )

  (5)x=1是方程。( )

  3、选择

  (1)x-12=20的解是( )

  a、x=18 b、x=32

  (2)4x=6的解是( )

  a、x=1.5 b、x=2

  (3)3x-7=21这个式子是( )

  a、方程 b、不等式 c、既是等式又是方程

  (4)x=5是方程( )的解

  a、15x=3 b、3x+2=17

  4、解方程(机动)

  28+x=92 x÷16=5(要求写出检验过程)

  四、小结

  通过学习你有什么收获?

  你觉得哪些地方值得注意?

  板书:

  30+35=65

  20+30=50

  20+x=100 含有未知数的等式叫方程。

  3x=186 使方程左右两边相等的未知数的值,叫做方程的解。

  求方程的解的过程叫做解方程。

五年级《方程》教案8

  教材分析

  新课程标准对于方程这部分内容在本学段有以下几个具体目标:

  1、在具体情境中会用字母表示数。

  2、结合简单的实际情境,了解等量关系。

  3、了解方程的作用,能用方程表示简单情境中的等量关系。

  4、能解简单的方程。

  在这一节前,学生已经认识了字母表示数的意义和作用,并初步了解了方程的意义和等式的基本性质,并能运用它解简易方程。

  这一课时是对前期知识进一步深化,担负着教学列方程和教学解方程的双重任务,是本单元的学习重点,也是教学难点。

  “稍复杂的方程”这块内容分三个例题,例题1:ax-b=c及其应用;例题2:ax+bx=c及其应用;例题3:ax+bx=c及其应用。这节课要思考的主要是探究学习例题1:形如ax-b=c的方程及其应用,本节课作为学生初次接触“稍复杂的方程”的第一课时。

  学情分析

  学生已经认识了字母表示数的意义作用,初步了解了方程的意义和等式的基本性质,并能运用它解简易方程。这一课时是对前期知识的进一步深化,是本单元的学习重点,也是教学难点。学生学习的困难之处是根据题目里的已知信息列出等量关系。

  教学目标

  1、使学生能根据等式的基本性质解稍复杂的方程。初步学会列方程解决一些简单的实际问题。

  2、培养学生抽象的'概括能力,发展学生思维的灵活性。培养学生根据具体情况,灵活选择算法的意识和能力。

  3、使学生感受数学与现实生活的联系,培养学生的数学应用意识与规范书写和自觉检验的习惯。

  教学重点和难点

  教学重点:学生自主探索列方程解决较复杂应用题的方法。

  教学难点:正确寻找等量关系列方程。

五年级《方程》教案9

  教学理念:

  让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。

  教学过程:

  一、课前探疑

  学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。

  二、课始集疑

  1、揭题

  2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。

  过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。

  三、课中释疑

  <一>认识天平:课件出示天平,同学们说天平的作用、用法。

  <二>认识等式

  1、演示课件 写出式子

  在左边放二个40克的`物体,右边放一个50克的法码,这时天平怎么样?

  你能用一个数学式子来表示这时候的现象吗? 40+50<100

  再在左边放一个30克的物体,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+30>100

  把左边的一个30克的物体换成10克的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+10=100

  再把左边的10克与50克的物体换成未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X<100

  再把左边的未知的物体换成另一个未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X=100

  再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? X + X=150

  2、分类

  刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。

  展示同学们不同的分类,并说说你们是按照什么标准分的?

  师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)

  3、理解概念

  师:为什么这么分?你们发现了这一类式子有什么特点? 左右两边相等

  揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)

  谁来举一些例子说说什么是等式?

五年级《方程》教案10

  教学目标:

  认知目标:复习用字母表示数。解学过的简易方程列方程解简单的文字题和应用题。

  能力目标:通过总复习,把所学的方程知识进一步系统化,以此培养学生的归 纳、总结的能力。学生根据自己的理解列出形式不同的方程,以养成灵活解题的能力, 进一步提高解决问题的能力。

  情感目标:

  通过经历复习的过程,在互动交流、共同梳理中,体验合作交流的情感以及享受成功的喜悦。

  教学重点:

  列方程解文字题和应用题。

  教学难点:

  列方程解应用题。

  教学过程:

  一、开门见山,揭示课题

  今天我们继续复习方程与代数的知识,先回忆一下上节课的内容。 今天我们将利用这些知识,列方程解文字题和应用题。

  二、复习与整理

  (一)列方程解文字题

  (1)4.2比一个数的4倍多1,求这个数。

  (2)某数比4.2的'4倍多1,求这个数。

  1.学生自己尝试解方程

  2.观察比较区别。

  3.小结:要看清是一倍数还是几倍数。

  师:列方程解文字题我们要怎么做? 首先通过读题,找到未知量和已知量,并用字母和含有字母的式子表示未知量;接着找出未知量和已知量之间的等量关系,并列出方程;随后解方程并检验。

  4.巩固练习(写出设句和方程,不解方程)

  (1)2.6与4.5的积加上一个数的3倍,和是13.8。求这个数。

  (2)一个数与3的和的4倍,正好等于这个数的6倍。求这个数。

  (3)一个数的5倍比14与5的积少14,这个数是多少?

  (4)甲、乙两数之和是2.8,甲数比乙数的2倍少1.4,求乙数。

  小结:解方程一定要养成检验的习惯,正确运用关系式求解.

  (二)列方程解应用题

  (1)地球绕太阳一周要用365天,比水星绕太阳一周的时间的4倍还多13天。水星绕太阳一周要用多少天? (体会文字题和应用题之间的练习,通过辨析、比较,进一步分析和掌握解方程的一般步骤。)

  (2)文具店里,一支钢笔的售价比一支铅笔贵10.5元,是铅笔售价的8倍,钢笔和铅笔的售价各是多少元? (要注意不同的等量关系可以列出不同的方程。)

  (3)儿童节时,老师向学生发放礼品,如果每个班发20份礼品,就会多出130份;如果每个班发25份礼品,则刚好分完,学校一共有几个班级?共准备了几份礼品? (要注意选择合理的未知量设X)

  小结:具体过程与列方程解文字题的步骤相似,但是由于题目的灵活性更高,根据题意,可能找到很多的等量关系,也就可以列出各种不同的方程。因此,列方程解应用题更灵活。

  【通过学生的分析、回顾和整理,充分表现出列方程解应用题的优势,进一步体会列方程解应用题的好处。从而通过成功的体验,让学生自愿自发的喜欢用方程解答较复杂的应用题。】

  三、本课小结

  在列方程解文字题和应用题时,要根据题意,找准等量关系,解决问题,更要注重检验。

  四、课后作业

  教材75页第五题和第六题。

五年级《方程》教案11

  教学内容:

  p53--54练习十一1,2,3

  教学目标:

  1. 通过观察天平演示,使学生初步理解方程的意义;

  2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;

  3. 培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学重点:

  判断一个式子是不是方程;初步理解方程的意义。

  课前准备:

  课件,习题板

  教学过程:

  一、复习旧知,激趣导入

  同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的`姿态告诉老师!

  二、出示学习目标

  1、初步理解方程的意义,会判断一个式子是否是方程

  2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

  三、学习过程。

  (一)认识天平

  (二)新课学习

  自学指导(一)。

  自学p53, 分别说一说图1,图2,,显示的信息。

  图1天平两边平衡,一个空杯重100克。

  图2在空杯里加一杯水后天平不平衡了。

  自学指导(二)

  再看图3说说图3 显示的信息。

  天平1杯子和里面的水比200克法码重

  天平2杯子和里面的水比300克法码轻

  自学指导(三)

  请用算式表示图3数量关系。

  天平1、100+x>200

  天平2、100+x<300

  自学指导(四)

  再看图4说说图4 显示的信息,请用算式表示图4数量关系

  100+x=250

  自学指导(五)

  观察比较下列算式说说你的发现

  观察比较

  100+x>200

  100+x<300

  100+x=250

  前面两个算式两边不相等,后面一个算式两边是相等的。

  教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

  课堂练习(一)

  写出几个等式

  自学指导(六)

  请学生把这里的等式分类,并说说你们是如何分类的?

  20+30=50

  20+χ=100

  50×2=100

  14-8=6

  3y=180

  78× 3=234

  100+2y=3×50

  学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

  教师总结:含有未知数的等式,称为方程。(板书)

  课堂练习(二)

  请大家写出几个方程。

  四、小结:回答什么是方程?

五年级《方程》教案12

  题:稍复杂的方程(一)课型:新授课课时安排:1课时

  教学目标:

  1、能根据等式的基本性质解稍复杂的方程.初步学会列方程解决一些简单的实际问题。

  2、培养抽象概括能力,发展思维的灵活性.培养根据具体情况,灵活选择算法的意识和能力。

  3、感受数学与现实生活的联系,培养数学应用意识与规范书写和自觉检验的习惯。

  4、在教学中渗透环保教育。

  教学重点:用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的问题。

  教学难点:用方程解决问题的思路和数量关系。

  教学准备:教学课件。

  教学流程:

  一、复习铺垫:

  1、根据下面叙述说说相等关系,并写出方程。

  (1)公鸡x只,母鸡30只,是公鸡只数的2倍。

  (2)公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。

  2、足球知识引出准备题:

  准备题:一个足球上有12块黑色皮,白色皮比黑色皮的2倍少4块,共有多少块白色皮?

  理解题意后,引导学生画出线段图,并就学生找出数量关系,独立完成计算。

  二、探究新知:

  1、引入和出示例1:足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?

  让学生比较复习题与例1的相同点和不同点。

  2、引导学生把准备题的线段图改为例1的线段图,引导学生进一步理解题意和找出题目中数量关系。

  3、教师:哪个数量是未知的?怎样设未知数X呢?请同学们任意选择一个你喜欢的关系式尝试列方程解答。

  4、反馈学生的.尝试完成情况,引导学生列方程完成例1(重点在于解方程方法的指导)。

  解:设共有x块黑色皮。

  黑色皮的块数×2-白色皮的块数=4

  2x一20=4

  2x一20+20=4+20

  2x=24

  2x÷2=24÷2

  x=12

  5、引导学生口头验算。

  6、引导学生总结列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示。

  ②分析、找出数量之间的等量关系,列方程。

  ③解方程。

  ④检验,写出答案。

  三、练习巩固:

  1、完成课本66页练习十二第1题:解方程。

  3x+6=182x-7.5=8.5

  16+8x=404x-3×9=29

  2、找出数量关系,只列方程不计算。(课件出示)

  (1)图书室有文艺书180本,比科技书的2倍多20本,科技书x本。

  (2)养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。

  (3)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。

  3、试一试,我能行:列方程解决问题。

  (1)共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?

  (2)北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是多少万平方米?

  (3)猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少km?

  (4)世界上最大的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米?

  四、全课总结:

  教师:今天这节课你学到了什么知识?

  板书设计:

  稍复杂的方程

  解:设共有x块黑色皮。

  黑色皮的块数×2-白色皮的块数=4

  2x一20=4

  2x一20+20=4+20(把2x看作一个整体。)

  2x=24

  2x÷2=24÷2

  x=12

  答:共有12块黑色皮。

  稍复杂方程(二)

  课题:稍复杂方程(二)课型:新授课课时安排:1课时

  教学目标:

  1、知识与技能:结合具体的情景掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。

  2、过程与方法:通过学习两积之和的数量关系,来理解两积之差、两商之和、两商之差的数量关系,培养举一反三的能力。

  3、情感、态度与价值观:让学生经历算法多样化的过程,利用迁移类推的方法在解决问题的过程中体会数学和现实生活的密切联系。在教学中渗透环保教育。

  教学重点:正确地寻找数量之间的相等关系,并能根据数量关系列方程解题。

  教学难点:正确地寻找数量之间的相等关系列出方程,并会解稍复杂的方程。

  教学准备:教学课件。

  教学流程:

  一、复习铺垫:

  1、根据问题说出求问题的数量关系。

  (1)足球和篮球一共有多少个?

  (2)每枝钢笔比每枝铅笔贵多少少?

  (3)王师傅每小时比李师傅每小时少加工零件多少个?

五年级《方程》教案13

  教学目标:

  1、进一步掌握等式的性质,会运用数量关系式或等式的基本性质对解方程的过程进行语言表述;

  2、会对具体的方程的解法提出自己解答的方案并能与同学交流;

  3、能够验算方程的解的`正确性。

  教学重点:多种方法解方程。

  教学难点:利用等式各部分之间的关系来解方程。

  一、复习导入

  1、 判断以下式子哪些是等式,哪些是方程?并说明理由。

  ①4+6=10, ②4+8x=40, ③16—7x, ④x÷5=8,

  ⑤9.2+3x=4.8, ⑥x-17<34, ⑦0.5x=1, ⑧ 8㎡,

  ⑨6a=30, ⑩a+b+c=17

  2、 解方程,并检验。复习用等式的性质解方程的方法。

  ①x+10=15 ②x﹣63=36 ③20+x=75

  指名板演,交流方法,检验解是否正确。总结解方程应注意的事项。

  设计参观周三下午的社团活动的大情境,贯穿新授,练习,拓展环节。

  一、新授

  1、 图片展示:三年级有12个班,每班x人参加“好吃俱乐部”社团,该社团共48人。

  请用方程表示数量关系: 12x=48

  2、 图片展示:12个小组成员品尝美食,已经有x个小组尝过了,还剩9个小组在等待。

  请用方程表示数量关系: 12﹣x=9

  3、 尝试用多种方法解以上两个方程,女生完成第一道,男生完成第二道,各自独立完成。

  4、 教师巡视,选取不同方法的解方程方式,要求学生板演。

  5、 汇报交流,总结,解方程的两种方法:

  ① 可以利用等式的性质来解;

  ② 可以利用等式各部分之间的关系来解。

  二、纠错

  1、“我爱数学”社团的孩子正在进行一场解方程比赛,老师收到了几份这样的答卷,请你做小老师,给每道题一个合适的评价。

  2、出示三到五份相同手写答卷,有一份全对,其他每份都有不同的错误,请学生判断,评价。

  3、总结,解方程时应注意的事项:

  ①书写格式:写“解”,等号要对齐;

  ②正确处理未知数与等式各部分之间的联系;

  ③检验,以保证方程的解的准确无误。

  四、拓展练习。

  1、“手工制作”社团的三个小组本周共同完成了60个作品,已知三个小组各自完成的作品数分别为三个连续的自然数,这三个数分别是多少?

  2、“数一数二”数学社团在进行趣味测量:一段木头,不知道它的长度,拿一根绳子量木头的长,把绳子拉直,绳子多4.5米;如果将绳子对折过来量,绳子又短1米,问:这段木头有多长?

五年级《方程》教案14

  教学目标:

  1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

  2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

  教学重点:理解等式的性质,理解方程的意义。

  教学难点:利用等式性质和方程的意义列出方程。

  教学准备:多媒体课件

  教学过程:

  一、情景引入

  1、出示天平。

  知道这是什么吗?你知道它是按照什么原理制造的吗?

  说说你的想法。

  如果天平左边的物体重50克,右边的放多少克才能保持天平的.平衡的呢?

  二、教学新课

  1、教学例1。

  (1)出示例1图。

  你会用等式表示天平两边物体的质量关系吗?把它写出来。

  50+50=100 (板书)

  说说你是怎样想的?

  (2)指出等式的左边,等式的右边等概念。

  等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

  能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

  2、教学例2。

  (1)出示例2图。

  天平往哪一边下垂说明什么?(哪一边物体的质量多)

  你能用式子表示天平两边物体的质量关系吗?

  学生独立完成填写,集体汇报。

  板书:x+50>100 x+50=150

  X+50<200 x+x=200

  如果让你把这四个式子分类,应分为几类?为什么?

  指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

  知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

  说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

  (2)讨论:等式与方程有什么关系?

  小组讨论。

  指出:方程一定是等式,但等式不一定是方程。

  方程是特殊的等式。他们的关系可以用集合圈表示。

  3、教学“试一试”。

  独立完成,完成后汇报方法。

  让学生说一说,每题中的方程哪个更简洁一些?

  指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

  4、完成“练一练。

  (1)完成第1题。

  独立完成判断后说说想法。

  (2)完成第2题。

  (3)完成第3题。

  交流所列方程,说说你为什么这样列?你是怎么想的?

  三、巩固练习

  1、完成练习一第1题。

  能说说每个线段表示的意思吗?方程怎样列呢?

  小组中交流列式。

  2、完成练习一第2题。

  理解题意,说说数量关系是怎样的?

  列出方程并交流。

  3、完成练习一第3题。

  四、课堂总结

  通过学习,你有哪些收获?

  板书设计:

  方程

  等式 50+50=100 x+50>100 x+50=150

  方程 X+50<200 x+x=200

五年级《方程》教案15

  一、教学目标

  1、使学生掌握列方程解应用题的一般步骤,会用方程解答一步计算应用题。

  2、使学生掌握检验方法,培养学生自觉检验的良好学习习惯。

  3、提高学生列方程解应用题和检验的能力。

  二、课时安排:

  1课时

  三、教学重点:

  使学生掌握列方程解应用题的一般步骤。

  四、教学难点:

  找题中数量间的等量关系。

  五、教学过程

  (一)导入新课

  激趣导入:

  出示主题图

  提出疑问:可以用什么方法解决这个问题呢?

  生讨论:

  算术法

  方程法

  师:我们可以用列方程解决应用题。

  (二)讲授新课

  怎样用方程解决应用题呢?

  (三)重难点精讲

  教学例4

  出示主题图:

  有25只丹顶鹤,丹顶鹤比白鹭多9只,白鹭有多少只?

  讨论:

  (1)这道题已知什么条件,要求什么问题?

  (2)白鹭与谁有关系呢?你能表示出来吗?

  (3)找出等量关系。

  小结:白鹭的只数+9=丹顶鹤的只数

  再讨论:

  (1)这个等量关系中哪个量是已知的?哪个量是未知的?

  (2)要用方程解答应用题,未知量要用什么来表示呢?

  (3)列出方程,并解答。

  师生交流:

  解:设白鹭有x只。

  x+9=25

  x+9–9=25–9

  x=16

  答:白鹭有16只

  生讨论:白鹭有16只。结果对吗?怎样来验算呢?

  学生汇报:

  (1)用算术法再计算一遍。

  (2)利用等量关系来验证。

  讲解代入法:

  x+9=25

  把x=16,代入方程的左边,16+9=25。方程的左边等于方程的右边。所以x=16是方程的解。

  小结:你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。

  有60只白天鹅,白天鹅的只数是黑天鹅的4倍,黑天鹅有多少只?

  讨论:

  (1)这道题已知什么条件,要求什么问题?

  (2)白鹭与谁有关系呢?你能表示出来吗?

  (3)找出等量关系。

  小结:黑天鹅的只数×4=白天鹅的`只数

  再讨论:

  (1)这个等量关系中哪个量是已知的?哪个量是未知的?

  (2)要用方程解答应用题,未知量要用什么来表示呢?

  (3)列出方程,并解答。

  师生交流:

  解:设黑天鹅有x只。

  4x=60

  4x÷4=60÷4

  x=15

  答:黑天鹅有15只

  生:验算

  讨论:想一想,怎样用列方程解决问题呢?

  学生汇报:

  列方程解应用题的步骤:

  1)弄清题意,找出未知数,并用x表示。

  2)找出题中的数量关系,列方程。

  3)解方程。

  4)检验,写出答案。

  (四)新知应用 巩固深化

  看图写出等量关系,并解答。

  (五)归纳小结

  这节课中,你学会了哪些知识点呢?

  列方程解应用题的方法。

  1)弄清题意,找出未知数,并用x表示。

  2)找出题中的数量关系,列方程。

  3)解方程。

  4)检验,写出答案。

  六、随堂检测

  列方程解下面各题。

  七、板书设计

  列方程解应用题

  把x=16,代入方程的左边,16+9=25。方程的

  左边等于方程的右边。所以x=16是方程的解。

  八、作业布置:

  59页5题

  九、教学反思

  学生找等量关系的能力,需要加强练习。

【五年级《方程》教案】相关文章:

《方程》教案11-26

方程的意义教案03-30

解方程教案03-29

《圆的方程》教案03-08

《方程的意义》教案02-18

五年级上册《简易方程》教案03-12

《方程》教案(15篇)04-01

《方程》教案15篇02-22

解方程教案15篇03-29