- 相关推荐
数的认识五年级数学教案
作为一位杰出的教职工,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那要怎么写好教案呢?以下是小编帮大家整理的数的认识五年级数学教案,希望能够帮助到大家。
数的认识五年级数学教案1
【教学内容】:
九年义务教育课本数学五年级第一学期(试用本)P31
Ⅰ:教案
【教学目标】
知识与技能:
1、通过具体的事例让学生初步了解平均数的概念;
2、知道求“平均数”的一个基本方法——平均数=总和÷个数;
3、知道平均数是个“虚拟”的数,它的取值范围在该组数据的最小值和最大值之间。
过程与方法:
1、从生活实际出发,让学生通过观察、比较、主动探索的过程中,了解和掌握求平均数的意义与方法,2、培养学生一定的估测能力,能对平均数的结果做出简单的推断和预测。
3、培养学生具有合作交流的意识和能力。
情感、态度与价值观:
体会“平均数”在现实生活中的实际意义及广泛用途,在学习过程中让学生享受学习的快乐。
【教学重点与难点】
重点:理解平均数的概念,知道求“平均数”的方法。
难点:理解平均数的概念。
【教学准备】
教具准备:夹玻璃球的用具、课件。
【教学过程】
一、游戏导入:
1、师:老师这里有200个玻璃球,要平均分给我们五个小组,每个小组能分到几个玻璃球?怎么算出来的?为什么要用除法来做?
生:200÷5=40(个)平均分
2、师:接下来,我们就一起来玩夹玻璃球的游戏,先听清游戏规则
(1、不能用手拿2、掉在桌上和地上的不算,时间:30秒钟。好,谁愿意来做裁判,帮大家看时间?我也加入一组玩。)
3、请小组长负责统计每组夹玻璃球的总数。
按组汇报板书
【教学策略说明:从夹玻璃球的游戏导入新课,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。】
二、探究新知:
1、比一比每组夹玻璃球水平的高低是怎样的?
2、师:就请大家把自己这组平均每人夹的个数算一算。
生:汇报各组平均每人夹的个数。
师:这些表示各个组平均每人夹玻璃球的个数叫作“平均数”,也就是这节课我们要学习的内容——出示课题
师:算出了平均数,现在可以比出夹玻璃球水平高低的名次了吗?
3、师:在平时的生活中像这样的事还有很多,下面请同学们一起来做一个公正的裁判,出示:
同学们跳集体舞得分统计表
年龄低年级组中年级组高年级组总分760588480人数865
师:你能给他们排出名次吗?
4、通过第一个游戏和为集体舞比赛排名,谁能说说求平均数的方法是什么?
板书:总和÷个数=平均数
5、例题教学
师:同学说得很好,现在来看看这几座大桥,你们都认识吗?
师:现在老师把五座大桥的长度告诉你们,请你们用计算器帮忙算出五座大桥的平均长度是多少?
师:完成后翻开书P31进行校对并读一读书上是怎样介绍平均数的。
师:(媒体上)在这道算式上,括号里的一组加法运算表示的是什么?5表示什么?得到的最后结果叫什么?
师:这个平均数6584。6米又表示什么意思?那么这五座大桥的长度有没有等于这个平均数的?说明平均数不是一个实际的数,它是一个“虚拟数”。
师:再来看看我们一开始做的两组题,200÷5=40是平均分,40是一个什么数?而右边一列算出每组夹玻璃球的平均数是个什么数?
6、了解了平均数的一些知识后我们来看这道题
有一篮子鸡蛋,每个鸡蛋的重量如下:
56g,55g,54g,58g,55g,53g,54g
先请同学估计一下这篮子鸡蛋平均一个有多重?你是怎么想的?
生:试做并交流(56+55+54+58+55+53+54)÷7=55 (g)
师:请将平均数55与每个鸡蛋的实际重量比一比,结果怎样?这道题算出的平均数与条件中一些数据会一样,是不是平均数就变成实际数了?为什么?
师:观察平均数和每个鸡蛋的重量,你发现了什么?
7、小结:今天我们学了什么知识,怎样来求平均数?还明白了哪些道理?
【教学策略说明:比一比每组夹玻璃球水平的高低引出要“算出每组平均每人夹的个数比”,初步感知平均数的意义。让同学们根据跳集体舞得分统计表来排名,是为了使学生进一步加深理解平均数在日常生活中的意义和实际作用以及计算的方法:总和÷个数=平均数的结论。】
三、巩固练习:
1、选择题:
学校篮球队队员的平均身高是160cm,李强是学校篮球队队员中是最矮的一位。下面表述正确的是()。
(1)他的身高是160 cm 。
(2)他的身高是160 cm以下。
(3)他的身高是160 cm以上。
(4)他的身高以上三种情况都有可能。
2、拓展题:
有3包糖,第一包35个糖,第二包有40个糖,第三包有45个糖
有3组小朋友,第一组12人,第二组有8人,第三组有10人
怎样分糖,比较合理?
四、总结:
你们今天学会了什么?有什么不懂要问的吗?
Ⅱ:教案设计说明
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“平均数”安排为统计中的一个重要学习领域,强调发展学生的统计观念。本单元是由平均数的认识,平均数的计算和平均数的应用三个部分组成。本课则是第1课时,让学生认识理解平均数的概念并掌握平均数的计算方法。
平均数是统计工作中常用的一种特征数,它能反映统计对象的集中趋势,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”和过去学过的“平均分”的结果是不同的,要弄清“虚拟数”和“实际数”是教学的难点。
(一)从夹玻璃球的游戏导入新课
1、先让学生将200个玻璃球,要平均分给五个小组,引出200÷5=40(个)平均分的意义。
2、接着组织学生玩夹玻璃球的游戏。
3、请小组长负责统计每组夹玻璃球的总数,按组汇报结果
这个开头既很快的复习了平均分的意义,又非常吸引学生,大大地调动了他们的积极性。游戏其实就是“数学化”的过程,它对于培养学生用数学的眼光观察、思考问题有着实际的意义。由熟悉的生活情景引入,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。
(二)、探究新知。
1、比一比每组夹玻璃球水平的高低引出问题——因为每组人数的不同,看夹球的总数比哪组夹玻璃球的水平高,有学生认为是不合理的,由此引发——“怎么比才合理”,通过学生的讨论问题最终获得解决的方法,“算出每组平均每人夹的个数比”初步感知平均数的意义。
2、让同学们根据跳集体舞得分统计表来排名,是为了使学生进一步加深理解平均数在日常生活中的意义和实际作用以及计算的方法。在两个生活实例的引导下,学生就比较内容能够得出总和÷个数=平均数的结论。
3、有了上面两道题的铺垫,书上P31的例题我就让学生去体验求平均数的完整过程与方法。
4、了解了平均数的一些知识后让我让学生来看这道题“有一篮子鸡蛋,每个鸡蛋的重量如下:
56g,55g,54g,58g,55g,53g,54g
先请同学估测这篮子鸡蛋平均一个有多重?再计算”。这道题是例题下的试一试,因为数字比较小而且较接近,所以我利用学生估测的结果和实际的平均数引发讨论出“平均数”是个虚拟数的的意义所在之处。以实例来证明,有利于学生的'理解。
(三)、巩固练习
安排了基础题和拓展题,基本题就是选择题,让学生理解平均数的真正含义,也是检测本课知识目标是否达标的有效方法。
拓展题让学生悬念顿生,迫使他们自觉产生思维碰撞,多角度思考问题,鼓励学生充分发表意见,从而进一步理解平均数的意义和一般方法。
总之,这堂课力求使既定的三维目标都能达到并且使学生感受到数学的应用价值,树立应用意识,能够初步形成解决日常生活工作中的数学问题的能力,并通过这一应用过程学会用数学的眼光看社会,从而获得必要的发展。
Ⅲ:教学反思
“平均数”是本册教材第三单元“统计”教学的主要内容,涉及的知识点包括平均数的意义,计算简单数据的平均数等。粗略地看,这部分内容好像无异于传统小学数学的教学内容,但仔细品味,我们可以发现,虽然知识还是这些知识,但通过这些知识所要传递的理念和思想,已经发生了重大变化,平均数的教学应该呈现出新的气象。本学期,我就以“平均数的认识”开了一堂课,颇有感触。
一、让学生在具体的活动中体会平均数的意义,起到了很好的作用。对小学生来说,平均数是表示“集中量数”,这样的专业术语是难于理解的。所以,在教学中我创设了如下情景:分小组在30秒内,玩夹玻璃球的游戏,然后统计每个小组夹玻璃球的总个数,最后进行比较哪组夹得多。因为我将每组的人数安排的有多有少,所以学生在比较时提出看夹球的总数比是不公平的,引起争论,为解决问题大家经过讨论想起了算出每组平均每人夹的个数来比就公平的,从而我很自然的介绍了平均每个人的夹球数又叫做“平均数”。运用统计知识解决实际问题的过程中,体会平均数的本质内涵,把握平均数的意义。这个教学情景的创设,调动了不同层次的所有学生共同参与,有趣的游戏吸引了每一位学生的注意力,这样的过程使每一个学生都乐在其中,整个学习活动没有一位学生是等待状态的。多变的练习,让学生对“平均数”得到多方面的感受。
二、练习在学生的数学学习过程中是必须的,但新课程的背景下,练习也要注入新的内涵,在进行基本训练的同时,努力让学生得到多方面的感受。本节课在练习设计中,我大幅删减了纯粹的技能训练,每个练习题在保证基本的双基训练功能的前提下,都力图呈现各具不同的侧重点,引导学生通过练习在知识技能以外的其他方面得到提升。
数的认识五年级数学教案2
本板块主要回顾复习整数、分数和小数的意义,读法、写法,数的改写,大小比较,小数的性质等概念,整理这些数之间的联系。
例1:我们学过了哪些数?一起来整理一下吧。对有关数的概念的回顾与整理。
教学时,虽然教材只对数的意义进行了回顾,但在教学时,对于数的读写、大小比较等知识要结合数的意义引导学生适当地回顾,从而能全面地理解数的意义。可以在教师的提示下独立或小组学习。通过学生的交流可以将学过的数进行如下的系统整理:
(1)以“1”为基础整理数的意义
整数:“1”是自然数的单位,若干个“1”组成自然数(0也是自然数)。自然数都是整数。
小数:把整数“1”平均分成10份、100份、1000份......这样的一份或几份是十分之几、百分之几、千分之几......可以用小数表示。
分数:把单位“1”平均分成若干份,这样的一份或几份用分数表示。
负数:像-2,-1,......这样的数就是负数。
然后教师引导学生总结:像......-3,-2,-1,0,1,2,3,......这样的数统称为整数,整数的个数是无限的,自然数是整数的一部分。并在数轴上呈现整数、小数、分数。可形成以下分类图:
A.整数的组成
正整数自然数整数零负整数
因此,自然数都是整数,但不能说整数都是自然数。
B.分数的分类
C.小数的分类
(2)以数位顺序表为依据整理整数和小数的读写方法。
在对数的意义进行整理之后,可接着对数的读写进行复习。
第一,完成整数和小数数位顺序表。
第二,复习整数的读法和写法。
整数读法:从高位到低位,一级一级地读,每一级末尾的0都不读,其他数位连续有几个0都只读一个零。
整数的写法:从高位到低位,一级一级地写,哪一个数位上一个计数单位也没有,就在那个数位上写0。
第三,复习小数的读法和写法。
小数读写法:整数部分与整数的读写法相同(整数部分是0的读写作零),小数部分顺次读写出每一个数位上的数字。
(3)复习数的改写。
数的改写包括以下几个方面:
A.多位数的改写。
把多位数改写成以“万”或“亿”作单位的数。
在万位的右边点上小数点,去掉小数末尾的零加上单位“万”;在亿位的右边点上小数点,去掉小数末尾的零加上单位“亿”。
B.求近似数。
去掉个级,个级千位上的数字四舍五入;去掉万级和个级,万级千万位上的数字四舍五入。
精确到哪一位就看哪一位后面的数字,按四舍五入法取近似数。
C.“改写”与“求近似数”的对比。
①相同点:都是改变原来数的计数单位。根据要求用“亿”或“万”等作单位。②不同点:“改写”只改变数的单位,不改变数的大小,用“=”表示。“求近似数”是用四舍五入法,既改变了数的单位,又改变数的大小,用“≈”表示。
例2:这些数之间有什么联系?是整理这些数之间的联系。
教学时,教师可以让学生进行充分地交流,结合学生的交流,师生一起尝试用一定的形式表现出这些数之间的联系。如,可以用以下的方式:
在对这些数进行大小比较时,要让学生理解,都是比较所包含的相同的计数单位的多少。
例3:小数的性质与分数的基本性质有什么联系?是对小数与分数的基本性质进行整理。
教学时,要先让学生分别回顾小数和分数的基本性质,然后用式子表达出它们的基本性质,再结合式子进行对比,找出它们之间的联系.
“讨论与交流”中围绕整数、分数、小数设计了一些思考的问题,通过对这些问题的讨论与交流,以加深学生对数的认识与理解。
教学时,可组织学生对“讨论与交流”中的两个问题进行讨论,老师可以参与到学生的讨论中。学生表达时,往往出现有一定的体会但表达不清楚的情况,老师可以给予一定的提升。明确:数几乎在人们生活的每一个方面都存在着,它影响着我们的生活、工作和学习。学习数,是我们在生活中用来表达和描述信息所必需的。如果生活中缺少了数,我们的生活中就会产生表达的障碍,也无法去描述。如果有的学生能举出其它的数(如无理数,有理数)要予以肯定,举不出来老师可以简单一说,不作为必须掌握内容。
“应用与反思”
第1题,是通过实际例子体会数的意义。练习时,可让学生先说说每个数是什么数,它表示的实际意义是什么,然后引导讨论:如果用小数表示李丽吃了多少西瓜合适吗?引导学生结合小数、分数的联系与区别进行思考,明确在这里用小数表示是不合适的。进而对小数、分数、百分数的区别与联系进行整理:小数既可以表示具体的数量(加单位),也可以表示两个量之间的关系,但只能表示几倍关系,不表示几分之几关系。分数既可以表示具体的数量(加单位),也可以表示两个数量之间的关系。百分数只表示两个数量之间的关系,不能加单位。
第2题是一组填空题。练习时,让学生独立完成。结合练习题,复习倒数、数的组成及分数、小数、整数互相转化的知识。第(2)小题中可能有的学生存在着理解困难,可以结合一些具体的实际例子让学生进行比较,然后再补充不同的例子进行巩固应用。这方面的填空题可以作适当的补充。
第3题是在数轴上表示不同数的练习题,目的是检验学生对不同数的'意义的理解。也可以以此题复习数的大小比较及分数、小数互化的知识。
第4题,是复习质数、合数等知识的题目。可以引导学生边做题边回顾奇数、与偶数、质数与合数等方面的内容。可以借助下面的图示帮助学生理解。
借助第(5)小题公倍数的复习引申到因数、公因数、最大公因数等内容的复习。
第5题是关于读数和数的意义的基本练习。可同时进行数的组成、改写、求近似数等内容的练习。
第6题是用正、负数知识解决实际问题的题目。在学生做完题后可让其谈谈对正、负数记录的感受,体会正、负数在生活中的作用。
第7题是用数来描述数量关系的题目。练习时,学生独立完成第一小题,注意弄清楚以谁为标准,谁与谁比。第二小题要让学生两个数量间存在什么样的关系,即部分与整体间的关系,用分数或百分数表示两种量间的关系比较合适。
第8题是较为综合地巩固各类数的意义的题目。让学生在解答的过程中体会这些数的实际价值,使学生体会到如果离开这些数,很难能清楚地描述南极大陆的特征。
数的认识五年级数学教案3
一、说教材
1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》
2、教材分析:
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。
3、教学重、难点:求平均数说课稿
平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。
4、教学目标
在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:
知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。
能力目标:能从现实生活中发现问题,并根据需要收集有用的'信息,培养学生的策略意识和应用数学解决实际问题的能力。
情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。
二、说教法:
“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、说学法:
在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。
四、说教学过程:
五年级下册数学平均数的再认识教学设计
教学内容 平均数的再认识
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备:多媒体
教学课时:1课时
教学过程
一、情境引入。
1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
【数的认识五年级数学教案】相关文章:
数的认识教案02-14
认识更大的数教案03-29
《1000以内数的认识》教案03-30
亿以上数的认识教案02-11
亿以内数的认识教案02-11
10以内的数的认识教案06-27
《认识10以内的数》教案01-24
《100以内数的认识》教案01-16
《认识整万数》教案08-29