范文资料网>反思报告>教案大全>《中位数公开课教案

中位数公开课教案

时间:2023-11-16 06:57:59 教案大全 我要投稿
  • 相关推荐

中位数公开课教案

  作为一名为他人授业解惑的教育工作者,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编收集整理的中位数公开课教案,欢迎大家分享。

中位数公开课教案

中位数公开课教案1

  教学目标:

  1.知识目标:理解中位数在统计学上的意义,学会求中位数的方法,并能根据数据的具体情况,体会“平均数”“中位数”各自特点。

  2.能力目标:能够运用中位数知识解决生活中的一些实际问题,提高学生运用知识解决实际问题意识与能力,培养学生分析与概括能力,以及与人合作的能力与意识。

  3.思想教育目标:感受统计在生活中的应用,增强统计意识,发展统计观念,体会数学应用的价值。

  4.经验目标:在已有平均数是描述数据集中程度统计量知识的基础上,对比认识中位数并了解中位数的优点。

  教学重点:

  中位数的意义以及求中位数的方法。

  教学难点:

  中位数意义的理解以及在什么情况下要运用中位数能表示一组数据的一般水平,中位数与平均数各自特点的理解。

  教学用具:

  多媒体课件

  教学过程:

  一、在比较中引出问题。

  1、情景创设:

  师:平均数在我们日常生活中常常会用到。老师今天也带来了有关平均数的一组数据,请同学们仔细观察,你觉得哪个班参赛选手的总体成绩好呢?

  出示:五年级两个班参加数学比赛学生成绩统计表 一班 姓名 李明 张红 王丽 张桐 吴洪 袁涛 苏林 平均分 得分 92.6 二班 姓名 王涛 李玉 李强 张明 许丽 朱辉 周磊 平均分 得分 90.5 生:从表中提供的平均数可以看出:一班学生平均分高于二班,所以一班学生总体水平高于二班。(回答正确)

  师:如果96分及96以上学生获奖,你判断一下,哪个班的获奖人数多一些吗?

  生:从平均数可以推断:一班同学获奖人数可能要多一些。

  师:同意这种观点的同学举手。(几乎没有同学有异议)

  [设计意图:平均数主要反映一组数据的总体水平,是学生的已有知识。

  2、出示完整统计表: 五年级两个班参加数学比赛学生成绩统计表 一班 姓名 李明 张红 王丽 张桐 吴洪 袁涛 苏林 平均分 得分 100 97 95 94 91 87 84 92.6 二班 姓名 王涛 李玉 李强 张明 许丽 朱辉 周磊 平均分 得分 100 98 97 96 93 90 60 90.5 师:看到以上的学生成绩,你有什么想说的?

  生回答。

  3、出示二班参加数学比赛学生成绩统计表

  师提问:这组数据中出现了一个过小的数,因而导致我们在判断获奖人数多少时,造成偏差。平均成绩90.5在这儿还能不能够反应出这一组数据的一般水平呢?生:不能。

  师:为什么这组数据的平均数据不能代表它的一般水平?

  生:这组数据中只有2个数据是低于平均成绩的,5个数据都高于平均成绩,平均成绩根本就不能代表这组数据的一般水平了。

  师:这里的平均成绩还能不能代表这组数据的一般水平?

  生:不能。

  师:由于这组数据中出现个别严重偏低的数据,导致平均成绩受到影响,变得比较低,平均成绩已经不能代表这组数据的一般水平。那么用什么数来代表一般水平更合适呢?

  4、引出中位数。

  二、认识中位数

  1、认识中位数的特点。

  师:老师板书“中位”,提问:按照你们的理解能说说什么是中位数吗? 生回答(中间位置的数)。

  师:刚才这组数据我们已经排好顺序了,如果没有排好顺序,中位数还是位于最中间吗?

  生:不一定。

  师:也就是先要把这组数据?

  生:把数据按大小顺序排列。

  师:可以按从大到小的顺序排,也可以按照从小到大的顺序排,最中间位置的数,顾名思义,我们就叫做中位数。

  2、与平均数比较认识中位数的优点

  师:为什么用中位数代表二班成绩的一般水平比平均数更合适?

  生:在这组数据中,由于个别数据偏低,影响了平均数,平均数已经不能代表这组数据的一般水平。

  师:中位数有没有受到这些偏小数据的影响?

  生:没有。

  师:也就是说中位数不会受到偏小数据的影响。会不会受到偏大数据的影响呢?

  生:也不会。

  师:正因为中位数有这个优点,不受偏大或偏小数据的影响。所以有时用它代表一组数据的一般水平更合适。(出示:中位数的优点是不受偏大或偏小数据的影响,因此,有时用它代表全体数据的一般水平更合适。)

  三、求中位数

  1、师:这样的数(中位数)你会找吗?你能找出下列各组数据的中位数吗?

  出示课件(1) 34、30、28、24、24、19、17(2)14、19、19、26、28

  (3)10、15、4、13、5

  学生汇报(1)(2)结果:24、19,简单说明理由。当汇报第三组结果时,有两种答案,引出矛盾冲突。(突破先排序)

  师:通过以上找中位数的活动,我们在找中位数时,首先要干什么?

  生:找一组数据的中位数,要先把这组数据按大小顺序排列。

  师:然后再做什么?

  生:一组数据按大小顺序排列后,最中间的数就是中位数。

  师:求一组数据的中位数,先按大小顺序排列后,最中间的数就是中位数。

  2、 师:观察以下两组数据,你还能找出这组数据的中位数吗?

  出示: 23、21、17、14

  13、15、16、18、19、20

  (1)先找学生试着找,讨论后汇报。师:通过这两组找中位数的活动,你对中位数的认识有哪些增加?

  (2)师总结一组数据按大小顺序排列后,如果数据的个数是奇数个,最中间的数就是中位数;如果数据的个数是偶数个,中间两个数的平均数就是这组数据的中位数。

  3、例5:出示 五年级(2)班7名男生的跳远成绩如下表 把这组数据从小到大排列。 把这组数据从大到小排列。 (1)分别求出这组数据的平均数和中位数。

  师:观察这组数据你会求他们的中位数吗?(会)首先我们要先(把这组数据排序)。

  我们可以按照从小到大或从大到小的顺序排列。(课件出示)

  师:这组数据的中位数是:(2.89)。(字的颜色改变)

  师:这组数的平均数是多少?请同学明借助计算器快速算一算。

  生:平均数是2.96。

  (2)用哪一个数代表这组数据的一般水平更合适?

  师:2.96能代表这个组的一般水平吗?为什么?

  生:不能,因为比它高的只有2个,比它低的却有5个,不能代表这组数据的'一般水平。

  师:用哪一个数代表这组数据的一般水平更合适?

  生:应选择中位数,比它大的和比它小的都有3个数据,处于正中间,代表这组数据的一般水平更为合适。

  (3)用中位数表示这组数的一般水平有什么优点?

  生:它不会受偏大偏小数据的影响。

  (4)在什么情况下,选择用中位数来描述一组数据的一般水平更合适呢?可以结合二班比赛成绩来说明。

  生:当这组数据中出现偏大偏小的数据,平均数已经不能代表这组数据的一般水平,此时选择用中位数来描述一组数据的一般水平更合适。

  (5)如果2.89 m及以上为及格,有多少名同学及格了,超过半数了吗?

  师:根据你对中位数的认识,说一说从“五年级二班7名男生跳远成绩的中位数是2.89米”中你能知道什么?(小组内说一说)

  生1:跳2.89米的同学是第四名,有三名同学比他跳得远,有三名同学比他跳得近。

  生2:还有可能有人和他跳得一样远。

  师追问:现在知道这组的杨东的成绩2.94 m,张鹏的成绩大约是第几名?

  生:第三名

  (6)如果再增加一个同学杨东的成绩2.94 m,这组数据的中位数是多少?

  师:说说你是怎样求的?(2.89+2.90)÷2=5.79÷2=2.895

  生:首先按顺序排序,最中间的是2.89和2.90,所以中位数是(2.895)

  四、总结。

  通过这节课的学习,你们对中位数有了怎样的认识?有了什么新的收获?

中位数公开课教案2

  教学内容和地位:

  众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

  教学重点和难点:

  本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

  教学目标分析:

  认知目标:

  (1)使学生认知众数、中位数的意义;

  (2)会求一组数据的众数、中位数。

  能力目标:

  (1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

  (2)在问题解决的过程中,培养学生的自主学习能力;

  (3)在问题分析的过程中,培养学生的团结协作精神。

  情感目标:

  (1)通过多媒体网络课件,提供适当的.问题情境,激发学生的学习热情,培养学生学习数学的兴趣;

  (2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库

  教法与学法:

  根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

中位数公开课教案3

  一、教材分析

  A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:2003年河南中考选择题16题.2000年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“2000一高英才杯” 选择题3题。

  B.教学目标

  1、知识目标:

  ①使学生理解众数与中位数的意义。

  ②会求一组数据的众数和中位数。

  2、能力目标:培养学生的观察能力、计算能力。

  3、德育目标:

  ①培养学生认真、耐心、细致的学习态度和学习习惯。

  ②渗透数学知识来源于生活,反过来又服务于生活的思想。

  C、重点·难点·疑点

  1.教学重点:定义的理解及求一组数据的众数与中位数。

  2.教学难点:

  ①平均数、众数、中位数这三数之间的区别与联系。

  ②偶数个数据的中位数的求法。

  3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

  二、教法设计

  问题情景教学法

  三、教学过程

  【引导回顾 搭建桥梁】

  ①怎样求一组数据的平均数?

  ②平均数与一组数据中的每个数据均有关系吗?

  这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

  14.2众数与中位数(课件)

  【创设情境 探究新知】

  问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

  鞋的尺码(单位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  销售量(单位:双)

  1

  2

  5

  11

  7

  3

  1

  在这个问题里,如果你是鞋店老板,你最关心的是什么?

  问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

  面包种类

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  销售量(单位:个)

  10

  15

  25

  5

  15

  30

  在这个问题中,如果你是店主,你最关心的是什么?

  定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

  同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

  注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

  ②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

  例1、在一次英语口试中,20名学生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求这次英语口试中学生得分的众数.

  请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

  问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

  观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

  中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

  2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

  例2 10名工人某天生产同一零件,生产的件数是:

  15 17 14 10 15 19 17 16 14 12

  求这一一天10名工人生产的零件的中位数.

  请观察分析后,自解.

  【诱向深入 拓展思维】

  例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

  成绩(单位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人数

  2

  3

  2

  3

  4

  1

  1

  1

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

  观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

  ②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

  ③可选用哪个公式求这组数据的平均数?所求得的`平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的不同角度。

  【展示应用 评价自我】

  补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

  解:∵10,10,x,8的中位数与平均数相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴这组数据中的中位数是9。

  补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:选(A)

  3、教材P159中1、2、3

  【链接知识 归纳小结】

  1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

  2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

  3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

  【布置作业】教材P163A组1、2、3,B组。

  【板书设计】

  14.2 众数与中位数

  1.定义 例1 例2 例3

  众数: 练习1 练习2

  中位数

  一、教材分析

  A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:2003年河南中考选择题16题.2000年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“2000一高英才杯” 选择题3题。

  B.教学目标

  1、知识目标:

  ①使学生理解众数与中位数的意义。

  ②会求一组数据的众数和中位数。

  2、能力目标:培养学生的观察能力、计算能力。

  3、德育目标:

  ①培养学生认真、耐心、细致的学习态度和学习习惯。

  ②渗透数学知识来源于生活,反过来又服务于生活的思想。

  C、重点·难点·疑点

  1.教学重点:定义的理解及求一组数据的众数与中位数。

  2.教学难点:

  ①平均数、众数、中位数这三数之间的区别与联系。

  ②偶数个数据的中位数的求法。

  3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

  二、教法设计

  问题情景教学法

  三、教学过程

  【引导回顾 搭建桥梁】

  ①怎样求一组数据的平均数?

  ②平均数与一组数据中的每个数据均有关系吗?

  这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

  14.2众数与中位数(课件)

  【创设情境 探究新知】

  问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

  鞋的尺码(单位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  销售量(单位:双)

  1

  2

  5

  11

  7

  3

  1

  在这个问题里,如果你是鞋店老板,你最关心的是什么?

  问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

  面包种类

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  销售量(单位:个)

  10

  15

  25

  5

  15

  30

  在这个问题中,如果你是店主,你最关心的是什么?

  定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

  同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

  注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

  ②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

  例1、在一次英语口试中,20名学生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求这次英语口试中学生得分的众数.

  请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

  问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

  观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

  中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

  2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

  例2 10名工人某天生产同一零件,生产的件数是:

  15 17 14 10 15 19 17 16 14 12

  求这一天10名工人生产的零件的中位数.

  请观察分析后,自解.

  【诱向深入 拓展思维】

  例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

  成绩(单位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人数

  2

  3

  2

  3

  4

  1

  1

  1

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

  观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

  ②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

  ③可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的不同角度。

  【展示应用 评价自我】

  补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

  解:∵10,10,x,8的中位数与平均数相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴这组数据中的中位数是9。

  补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:选(A)

  3、教材P159中1、2、3

  【链接知识 归纳小结】

  1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

  2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

  3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

  【布置作业】教材P163A组1、2、3,B组。

  【板书设计】

  14.2 众数与中位数

  1.定义 例1 例2 例3

  众数: 练习1 练习2

  中位数

【中位数公开课教案】相关文章:

公开课教案11-08

公开课教案04-18

语言公开课教案04-01

《养花》公开课教案03-07

《春》公开课教案03-11

礼物公开课教案03-05

《争吵》公开课教案03-10

公开课幼儿教案01-13

篮球公开课教案04-11

《金子》公开课教案03-02