平行四边形教案范文集锦八篇
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?下面是小编整理的平行四边形教案8篇,希望对大家有所帮助。
平行四边形教案 篇1
教学目标
知识技能目标
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四 边形的这两种判定方法,并学会简单运用.
过程与方法目标
1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.
2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.
情感态度价值观目标
通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
教学重点:
平行四边形判定方法的探究、运用.
教学难点:
对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.
教学过程
第一环节 复习引入:
( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)
问题1(多媒体展 示问题)
1.平行四边形的定义是什么?它有什么作用?
2.平 行四边形还有哪些性质?
问题2
有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?
第二环节 探索活动(12分钟,学生动手探究,小组合作)
活动1:
工具:两根长度相等的笔,
两条平行线(可利用横格线).
动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
思考1.2:以上活动事实,能用字语言表达吗?
目的:
得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.
活动2
工具:两根不同长度的细纸条.
动手:能否用这两根细纸条在平面上
摆出平行四边形?
思考2.1:你能说明你们摆出的四边形是平行四边形吗?
思考2.2:以上活动事实,能用字语言表达吗?
目的:
得出平行四边形的.性质:对角线互相平分的四边形是平行四边形
第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)
随堂练习:
1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.
(1)OA与OC,OB与OD相等吗?
(2)四边形BFDE是平行四边形吗?
(3)若点E,F在OA,OC的中点上,你能解决上述问题吗?
2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?
(让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)
学生想到的画法有:
(1)分别过A,C作BC,BA的平行线,两平行线相交于D;
(2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;
(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.
第四环节 小结:(4分钟,学生回答问题)
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.
第五环节 布置 作业:
B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题
A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?
② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?
平行四边形教案 篇2
教学内容
本册教材第37—38页上的内容,完成第37页上的“做一做”。
教学目的
1、使学生初步认识平行四边形,了解平行四边形的特点。
2、通过学生手动、脑想、眼看,使学生在多种感官的协调活动中积累感性认识,发展空间观念。
教学重点
探究平行四边形的特点。
教学难点
让学生动手画、剪平行四边形。
教学过程
(一)认识平行四边形
1、出示主题图。
从图中你看到了哪些图形,指给同桌看。
2、出示带有平行四边形的'实物图片。
师:它们是正方形吗?是长方形吗?(学生回答后,教师接着问。)
师:它们有几条边?几个角?它们叫什么图形呢?
学生回答后教师说明:这样的图形叫平行四边形。
3、感受平行四边形的特点
(1)让学生拿出三条硬纸条,用图钉把它们钉成三角形,然后拉一拉。(学生一边拉一边说自己的感受)
(2)让学生拿出教师给他们准备的四条硬纸条,用图钉把它们钉成一个平行四边形形,然后拉一拉。(学生一边拉一边说自己的感受)
(3)小组讨论操作:怎样才能使平行四边形拉不动呢?
学生汇报时,要说说理由。
(二)掌握平行四边形。
1、在钉子板上“钩”。
你认为什么样的图形是平行四边形呢?在钉子板上围围看。(学生动手操作,
然后汇报、展示)
2、在方格纸上“画”。
让学生在方格纸上画出一个平行四边形。(学生动手操作,然后汇报、展示)
3、折一折、剪一剪。
你会剪一个平行四边形吗?(学生动手操作,然后汇报、展示并说说各自不同的剪法。)
4、通过上面的活动,你发现平行四边形是一个什么样的图形?(小组讨论)
(三)巩固平行四边形。
1、课堂练习:完成练习九第1—3题。
2、课外练习:完成练习九第5题。
平行四边形教案 篇3
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的'几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
平行四边形教案 篇4
教学过程
一、课堂引入
1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?
2.你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)
图中有几个平行四边形?你是如何判断的?
二、例习题分析
例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.
分析:所证明的结论既有平行关系,又有数量关系,联想已学过的`知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.
方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)
方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。
平行四边形教案 篇5
教学目标
1.进一步认识平行四边形是中心对称图形。
2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。
3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点与难点
重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。
难点:发展学生的合情推理能力。
教学准备直尺、方格纸。
教学过程
一、提问。
1.平行四边形的特征:对边( ),对角( )。
2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)
二、引导观察。
1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。
2.在如课本图12。1。3那样的.旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?
通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。
(培养学生用自己的语言叙述性质。)
三、应用举例。
如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。
(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)
例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?
(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)
四、巩固练习。
1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。
2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。
3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。
4。试一试。
在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。
5.练习。
如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?
五、看谁做得又快又正确?
课本第34页练习的第一题。
六、课堂小结
这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?
七、作业
补充习题
平行四边形教案 篇6
教学目标:
1、通过拉一拉长方形,初步认识并了解平行四边形的特点。
2、通过围一围、画一画,剪一剪,学会会在方格纸上画平行四边形。
教学准备:两个长方形相框(相同大小,可活动)
教学过程:
一、动手探索,多角度认识:
1、我们学了四边形,怎么判断一个图形是不是四边形呢?
(板书:四边形四条直边四个角)
2、观察老师做的长方形框架,这是不是四边形?它还有什么特征?(对边相 等,有4个直角)
3、拉动长方形框架,发生了什么变化?(角、边、形)
4、揭题:这就是我们今天要学的——平行四边形。(完善板书)
5、看一看,拉一拉,你发现了什么?(对边相等,没有直角……)
是不是所有的平行四边形都有这样的特征呢?在书上的平行四边形上动手 量一量。
6、生活中有这样的图形吗?
1)出示主题图:为什么移动门要设计成这样的'形状呢?
2)展示三角形的稳定性和平行四边形的不稳定性。通过拉一拉的活动。
7、围一个平行四边形。
闭眼想一想,平行四边形是什么样子的?请一个学生在讲台的钉子板上围一 围。
8、你能在方格图上画一个平行四边形吗?(说出你是怎么画的)
鼓励优生多画几个不同的四边形。
9.“猜猜它是谁”:
1)我的背后躲着一个平行四边形,可以看见一条长边是5厘米,一条短边是3厘米,你能猜出另外一条长边和短边分别是几厘米吗?为什么?
2)我的背后躲着一个四边形,它对边相等,没有直角,请问它是什么图形? 四、创设情境,欣赏平行四边形 。
在哪些地方可以见到平行四边形呢?
成功之处:平行四边形是几何图形中,学生即将认识一个新朋友,怎样学生学会简单辨认平行四边形呢?通过复习长方形,对长方形特征的复习,再拉一拉,让学生观察什么变了?什么不变?再给这种新图形命名,我认为还是符合学生认知规律的。接着让量一量书上的平行四边形的边和角,概括出平行四边形的特点。然后,学生示范围一围,画一画加深对平行四边形的认知。其次,对比拉三角形和平行四边形得出不稳定性。最后通过观察例举,猜一猜巩固认知。
不足之处:因为我担心学生不能备好学具,于是一手操办。学具准备不充分,在课堂上学生只能通过观察,利用对长方形旧知的迁移,认识平行四边形及其特点。围一围的操作范围小,马上进入画一画环节。发现绝大多数学生就开始画长方形,并没有把长方形与平行四边形区分开来。于是“没有直角的平行四边形”成了学生画图的要求,但是在要求之后,部分学生都排除了水平画法和垂直画法,都在方格纸上画倾斜的平行四边形,这样难度大幅度增加了。疑惑:这是在哪里出了岔子了?幸好在说你是怎么画的?通过比较让学生了解怎样简便的画出一个平行四边形,同时鼓励能正确得画出倾斜的平行四边形。但是,又多占据了一些课堂时间。总缺乏课堂练习。
重新设计应该注意的地方:让每个学生都参与围平行四边形的活动中,在学生画平行四边形之前,应让学生说说画时应注意的地方,同时在学生画时出现不规则的地方让学生展开讨论。预设出学生画时可能出现的错误,先画两条与方格重合的现,再画两条斜边。画完后总结最佳画法:先把直边画对了,斜边再连线就可以了。
平行四边形教案 篇7
教学内容:国标苏教版数学第八册P43-45。
教学目标:
1、学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。
2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。
教学难点:引导学生发现平行四边形的特征。
教学准备:配套多媒体课件。
教学过程:
一、生活导入。
1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形。
2、你们还能找出我们生活中见过的一些平行四边形吗?学生回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。
3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形。
[评:《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。]
二、探究特点。
1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自己来想办法来制作一个平行四边形呢?你们可以先看一看材料袋中有哪些材料,再独立思考一下准备怎么做;如果有困难的可以先看看学具袋中的平行四边形再操作。
2、大家已经完成了自己的创作,现在请你们和小组的同学交流一下,说说自己的做法和为什么这样做,然后派代表上来交流。
学生小组交流,教师巡视,并进行一定的辅导。
3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。
(1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?
(2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才能做一个平行四边形?
(3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才能得到一个平行四边形?
(4)用直尺画一个平行四边形。
……
(评:这个个环节的设计,本着学生为主体的思想,敢于放手,让学生的多种感官参与学习活动,让学生在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、学生之间的多向交流,体现那了学生为本的理念。)
4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?
(评:本环节的设计,通过在方格纸上画,让学生再次感知平行四边形的一些特点,为下面的猜想、验证和画高作了铺垫。)
5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么共同特点呢?下面我们一起来研究。
根据你们在制作平行四边形的时候的体会,你们可以猜想一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的那些方面来猜想它的特征呢?边?角?)
6、学生小组讨论后提问并板书猜想:
对边可能平行;
对边可能相等;
对角相等;
……
7、你们真行,有了这么多的'猜想,那我们能够自己想办法来证明这些猜想是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜想。
学生每小组上台认领一条猜想,学生分组验证猜想。
8、经过同学们的努力,我们已经自己验证了其中一条猜想,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?
9、小组派代表上来交流自己小组的验证方法,其他小组在其完成后进行评价。
(1) 两组对边分别相等:学生介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。
(2) 两组对边分别平行:学生汇报的时候如果不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。
(3) 对角相等:学生说出方法后,教师让学生再自己量一量。
……
最后,教师板书出经过验证特点:
两组对边分别平行并且相等;
对角相等;
内角和是360°
(评:这个环节的设计蕴涵了“猜想-验证-结论”这样一个科学的探究方法。给学生提供了充分的自制探索的空间,引导学生先猜测特点,再放手让学生自己去验证和交流,使学生在碰撞和交流中最后的出结论。在这个过程中,学生充分展示了自己的思维过程,在交流中与倾听中把自己的方法与别人的想法进行了比较。)
10、完成“想想做做1”。学生独立完成后说说理由。
三、认识高、底。
1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。
学生自己尝试后交流。
2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)
说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。
3、你能画出另一组对边上的高,并量一量吗?学生继续尝试。
完成后,让学生指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。
4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。
5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标记。如果有错误,让学生说说错在哪里。
(这个环节的设计,通过学生自己去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,学生学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让学生领悟了高的知识。)
四、练习提高。
1、想想做做1,哪些图形是平行四边形,为什么。
2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。
3、想想做做3,用七巧板中的3块拼成一个平行四边形。
出示,你能移动其中的一块将它改拼成长方形吗?
4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。
5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。
(评:在巩固练习中,注意通过学生动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,学生容易接受,并且注意了引导学生去自主探索、合作交流。)
五、阅读调查
自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。
六、全课小结
今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?
平行四边形教案 篇8
教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感
教学重点:
让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
教学难点:
让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教学准备:
平行四边形卡片、剪刀、三角板
教学过程:
一、课前复习,回顾旧知
1、 长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习平行四边形面积公式做铺垫)
2、 生:长方形面积=长×宽。
二、提出问题,导入新课
1、出示主题图:(看课本第86页的图)
(1)、发现了哪些图形?你会求哪些图形的面积?
(2)、故事引入
学校门前有两个大花坛,左边的是长方形的,右边的是平行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说平行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。
师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)
比较方法:
1、叠起来比;(比不了,形状不一样)
2、数方格比。
师:平行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨平行四边形的.面积的计算方法。(板书课题)
三、探索发现、推导公式
1、猜想:平行四边形的面积跟什么有关系呢?(板书:底和高;两条边)
2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。
课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把平行四边形剪拼成长方形)
现在,同学们也用剪拼的办法,把平行四边形转化成长方形,每个学习小组长的手上都有一个平行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。
小组根据导学提纲进行合作学习
(1)怎样把平行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)
(2)讨论:平行四边形转化成长方形后面积变了吗?
(3)讨论:转化成的长方形的长和平行四边形的底是否相等?
(4)讨论:转化成的长方形的宽和平行四边形的高是否相等?
3、学生操作验证
师:这个剪拼的任务就交给你们了。
4、交流汇报
(1)生1:先在平行四边形上画一条高,沿着高剪开,把平行四边形分成了一个三角形,一个梯形,然后把三角形向右平移,拼成了长方形。
生2:在平行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右平移,拼成了长方形。
师:这样的变化过程在数学上叫做“转化”,平行四边形转化成长方形。
(2)面积没变,只是形状变了。
(3)长方形的长和平行四边形的底相等。
(4)长方形的宽和平行四边形的高相等。
(5)平行四边形的面积怎样算?
5、集体推导
齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)
一个平行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与平行四边形的面积(相等),这个长方形的长与平行四边形的(底)相等,这个长方形的宽与平行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以平行四边形的面积=(底 X 高)。
板书:长方形的面积 = 长 X 宽
↓ ↓ ↓
平行四边形的面积 = 底 X 高
6、字母表示公式
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)
7、回到学生们的猜想,平行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出平行四边形的面积了。
师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。
8、运用公式:学习88页例1
师:让我们回到学校门前的花坛吧。
出示题目,学生读题,学生口答,老师板书过程。
9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。
三、巩固拓展
1、课本89:第1题。(学生在练习本中解答)
2、口答:下面的平行四边形的面积是多少平方厘米?
3、选择题:(区分对应的底和高)
4、实际应用:课本89:第4题第1个图(先量出底和高,再计算) 求楼梯扶手的面积。
5、口答
(1)平行四边形的底不变,高扩大2倍,面积就( )。
(2)平行四边形的高不变,底缩小2倍,面积就( )。
(3)平行四边形的底扩大2倍,高也扩大2倍,面积( )。
四、总结全课,提高认识
1、通过今天的学习,你有那些收获?还有那些遗憾的地方?
2、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。
板书设计:
平行四边形的面积
长方形的面积 = 长×宽
↓ ↓ ↓
平行四边形的面积= 底×高
S = a×h
【平行四边形教案】相关文章:
平行四边形教案04-01
平行四边形的面积教案11-27
平行四边形面积教案02-09
《平行四边形的面积》教案02-17
《平行四边形的判定》教案06-03
认识平行四边形教案03-05
《平行四边形的认识》教案03-15
数学《平行四边形的面积》教案02-14
平行四边形和梯形教案03-11
数学平行四边形的面积教案02-28