范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-24 11:28:28 教案大全 我要投稿

平行四边形教案模板汇总七篇

  在教学工作者开展教学活动前,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?下面是小编精心整理的平行四边形教案7篇,希望对大家有所帮助。

平行四边形教案模板汇总七篇

平行四边形教案 篇1

  教学目标

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的`周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

平行四边形教案 篇2

  一、实验目的

  验证互成角度的两个力合成时的平行四边形定则.

  二、实验原理

  如果使F1、F2的共同作用效果与另一个力F′的作用效果相同(橡皮条在某一方向伸长一定的长度),那么根据F1、F2用平行四边形定则求出的合力F,应与F′在实验误差允许范围内大小相等、方向相同.

  实验器材

  方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔.

  三、实验步骤

  (一)、仪器的安装

  1.用图钉把白纸钉在水平桌面上的方木板上.并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.

  (二)、操作与记录

  2. 用两只弹簧测力计分别钩住细绳套,互成角度地 拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向.

  3.只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向.

  (三)、作图及分析

  4.改变两个力F1与F2的大小和夹角,再重复实验两次.

  5.用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示.

  6.用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.

  7.比较一下,力F′与用平行四边形定则求出的合力F在误差范围内大小和方向上是否相同.

  四、注意事项

  1.位置不变:在同一次实验中,使橡皮条拉长时结点的位置一定要相同.

  2.角度合适:用两个弹簧测力计钩住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°~100°之间为宜.

  3.尽量减少误差

  (1)在合力不超出量程及在橡皮条弹性限度内的前提下,测量数据应尽量大一些.

  (2)细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套方向画直线,应在细绳套两端画个投影点,去掉细绳套后,连直线确定力的方向.

  4.统一标度:在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的`图示稍大一些.

  五、误差分析

  本实验的误差除弹簧测力计本身的误差外,还主要来源于以下两个方面:

  1.读数误差

  减小读数误差的方法:弹簧测力计数据在允许的情况下,尽量大一些.读数时眼睛一定要正视,要按有效数字正确读数和记录.

  2.作图误差

  减小作图误差的方法:作图时两力的对边一定要平行,两个分力F1、F2间的夹角越大,用平行四边形作出的合力F的误差ΔF就越大,所以实验中不要把F1、F2间的夹角取得太大。

  例1、对实验原理误差分析及读数能力的考查:(1)某实验小组在探究合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度地拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条.实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的_BD_______.(填字母代号)

  A.将橡皮条拉伸相同长度即可

  B.将橡皮条沿相同方向拉到相同长度

  C.将弹簧秤都拉伸到相同刻度

  D.将橡皮条和细绳的结点拉到相同位置

  (2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是__AD______.(填字母代号)

  A.弹簧秤、细绳、橡皮条都应与木板平行

  B.两细绳之间的夹角越大越好

  C.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大

  D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些

  (3)弹簧测力计的指针如图所示,由图可知拉力的大小为__4.00____N.

  例2对实验操作过程的考察: 某同学在家中尝试验证平行四边形定则,他找到三条相同的橡皮筋(遵循胡克定律)和若干小重物,以及刻度尺、三角板、铅笔、细绳、白纸、钉子,设计了如下实验:将两条橡皮筋的一端分别挂在墙上的两个钉子A、B上,另一端与第三条橡皮筋连接,结点为O,将第三条橡皮筋的另一端通过细绳挂一重物,如图所示

  (1)为完成该实验,下述操作中必需的是___bcd _____.

  a.测量细绳的长度

  b.测量橡皮筋的原长

  c.测量悬挂重物后橡皮筋的长度

  d.记录悬挂重物后结点O的位置

  (2)钉子位置固定,欲利用现有器材,改变条件再次验证,可采用的方法是________改变重物质量______.

  例3:有同学利用如图2-3-4所示的装置来验证力的平行四边形定则:在竖直木板上铺有白纸,固定两个光滑的滑轮A和B,将绳子打一个结点O,每个钩码的重量相等,当系统达到平衡时,根据钩码个数读出三根绳子的拉力F1、F2和F3,回答下列问题:

  (1)改变钩码个数,实验能完成的是 (BCD )

  A.钩码的个数N1=N2=2,N3=4

  B.钩码的个数N1=N3=3,N2=4

  C.钩码的个数N1=N2=N3=4

  D.钩码的个数N1=3,N2=4,N3=5

  (2)在拆下钩码和绳子前,最重要的一个步骤是 ( A )

  A.标记结点O的位置,并记录OA、OB、OC三段绳子的方向

  B.量出OA、OB、OC三段绳子的长度

  C.用量角器量出三段绳子之间的夹角

  D.用天平测出钩码的质量

  (3)在作图时,你认为图中____甲____是正确的.(填“甲”或“乙”)

  当堂反馈:

  1、“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳.图乙是在白纸上根据实验结果画出的图.

  (1)如果没有操作失误,图乙中的F与F′两力中,方向一定沿AO方向的是___ F′_____.

  (2)本实验采用的科学方法是__B______.

  A.理想实验法 B.等效替代法 C.控制变量法 D.建立物理模型法

  2、某同学做“验证力的平行四边形定则”实验时,主要步骤是:

  A.在桌上放一块方木板,在方木板上铺一张白纸,用图钉把白纸钉在方木板上;

  B.用图钉把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴上两条细绳,细绳的另一端系着绳套;

  C.用两个弹簧测力计分别钩住绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O.记录下O点的位置,读出两个弹簧测力计的示数;

  D.按选好的标度,用铅笔和刻度尺作出两只弹簧测力计的拉力F1和F2的图示,并用平行四边形定则求出合力F;

  E.只用一只弹簧测力计,通过细绳套拉橡皮条使其伸长,读出弹簧测力计的示数,记下细绳的方向,按同一标度作出这个力F′的图示;

  F.比较F′和F的大小和方向,看它们是否相同,得出结论.

  上述步骤中:(1)有重要遗漏的步骤的序号是__C______和____E____;

  (2)遗漏的内容分别是________________________________________________________________________

平行四边形教案 篇3

  教学目标:

  1、认识平行四边形和梯形,探索平行四边形和梯形的特征及平行四边形的易变特征;

  2、在实际操作、想象验证中培养学生的空间想象能力;

  3、了解平行四边形、梯形、长方形、正方形之间关系,渗透事物间是互相联系着的辩证唯物主义观点。

  教学重点:理解平行四边形与梯形的特征。

  教学难点:四边形内各种图形间的关系。

  课前准备:自制课件1个、平行线胶片。

  板书设计:

  平行四边形梯形

  两组对边分别平行只有一组对边平行

  教学过程:

  一、准备

  师:前面我们学习了平行线,现在同学们动手在投影片上画一组平行线,好吗?

  提醒:线可以画得长一点,流畅一些!

  二、操作、反思

  1.操作(一)

  (1)想象。

  师:老师课前也画了一组平行线。如果把两组平行线相交,围成的会是一个怎样的图形,大家能先来想象一下吗?把你想到的图形画在纸上。

  [学生作图,教师有意识的巡视学生的作品]

  (2)交流。我们来交流一下,可以吗?

  要求学生介绍一下图形的明显特征。

  (3)验证。

  师:那么两组平行线相交,真能搭成这些图形吗?我们来验证一下,同桌合作,动手搭一搭,看看能不能成功?

  2、操作(二)

  (1)想象。

  师:接下来我们换换材料,好吗?还是两组线,一组仍是平行线,另一组是不平行的线,它们相交,围成的又会是什么图形呢?你能来画画吗?

  (学生想象作图)

  (2)交流。

  教师选择学生所作[看看能不能找到一个类似的'作代表],同时出示与之对应的彩色图形,贴在磁板上。

  ……

  (3)验证。

  师:又有了各种各样的。我们请个同学上来搭一搭,帮我们验证一下!

  三、展开:

  1、分类

  (1)师:全面欣赏一下我们的成果。这么多图形,大家它们有没有相同的地方或不同的地方?

  (2)我们四人为一组,一起来找一找,看看哪个组发现得最多!

  ①(都有四条边,四个角,都是四边形,至少有一组对边平行)板书:四边形

  ②有直角和没直角的;

  ③有些是由两组平行线搭成的,有些是由一组平行线和一组不平行的线搭成的!能听明白吗?谁来给们解释一下!

  (3)根据这个特点,谁能上来把这些图形分分类。

  2、取名,进一步了解特征

  (1)师:(手指分类后平行四边形一列)这些四边形有什么特点?还有谁想说?(板书:两组对边分别平行)

  (2)谁能给这类图形取一个符合它特点名字吗?

  (板书:有两组对边分别平行的四边形叫做平行四边形)

  (3)师:(手指另一列)它们能叫平行四边形吗?为什么?

  师:这种特点的四边形,我们该叫它什么呢?

  3、生活应用

  (1)师:为什么有同学要称它们为梯形呢?

  (2)生活中你还在哪些东西上看到过平行四边形和梯形?

  学生举例后,教师投影相应的图片:比较美观、上窄下宽,非常稳定

  (3)出示实物图:这是校园的铁栅门。我们从上面能找到[平行四边形],用这样的形状制造,有什么好处吗?老师这里有几个木架,我们来玩一玩,看能不能发现点什么?

  校园铁栅栏材料招标工作现在开始:各路图形,争先恐后,争相竞标。其中三角形和平行四边形的争夺尤其激烈。如果你是总务主任,会选择哪种材料呢?为什么?

  4、两组练习。下面我们做几个练习来巩固一下:

  (1)下图中哪些是平行四边形,哪些是梯形?同学们有没有问题?

  (2)我们曾经学过正方形是特殊的长方形。它们的关系可以这样表示!

  那么正方形、长方形和平行四边形这种特殊的关系又该怎么表示呢?

  可以用文字表达的!如果我们画图呢?

  四边形

  梯形

  平行四边形

  长方形

  正方形

  (3)判断下面的说法对吗?

  l一组对边平行的四边形,叫做梯形;

  l有两组对边平行的图形,都叫平行四边形;

  5、拓展:了解图形转换的内在联系[机动]

  师:让我们一起来做个数学游戏,进一步了解图形间的关系。

  (1)你能用撕一撕、拼一拼的方法把一个平行四边形转化成一个大小相等的长方形吗?

  (2)用撕一撕的方法,你能把一个平行四边形撕成两个完全相等的图形吗?

  ……

  投影学生的各种图形:

  小结:图形确实可以千变万化,再进一步深入研究我们能够发现它们之间还有着十分丰富的联系,有兴趣的话同学们可以在课后继续研究。

平行四边形教案 篇4

  教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  教学目标:

  1。通过操作和讨论掌握平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

  2。培养分分析观察能力、动手操作能力和有序思考的能力,培养学生的空间观念和想像力。

  3。体会数学学习的乐趣,树立学习信心,感受数学价值。

  教学重点:

  通过操作和讨论掌握平行四边形和梯形的特征。

  教学难点:

  了解平行四边形与长方形和正方形的关系。

  教学准备

  教具:正方形、长方形、平行四边形和梯形图各一;多媒体课件。

  学具:直尺,三角板,练习纸一张。

  教学过程:

  一、回顾旧知,引入新课。

  师:孩子们,在我们三年级时已经学过并认识了许多的四边形,那怎样的图形叫四边形呢?

  师:今天四边形之家要邀请它的家族成员来开联欢会,看,它们来了。(课件出示)你还认识它们吗?请你说一说你认识的图形的名称。(生说名称,教师相应的课件出示名称)

  师:你能把它们分分类吗?

  师:长方形和正方形是我们的老朋友了,你们能介绍它们的边与角各有什么特征吗?

  师:这两个图形(出示和,并粘贴在黑板上)你能试着说一说它的特征吗?

  师:长方形和正方形我们已经很熟悉了,所以大家描述得既准确又充分,(拿下长方形和正方形),指着平行四边形和梯形说:这两个图形我们不熟悉,所以描述的信息不够准确,没关系,通过本节课的学习,会让你清楚的认识平行四边形和梯形。

  二、探索发现,掌握特征。

  1。联系生活,建构概念

  师:其实生活中就有许多物体的表面是平行四边形或梯形。(课件出示一组图片)找一找,有平行四边形吗?梯形呢?说说看!

  师:你们真会观察啊!除了这些,你能举出生活中的哪些物体的表面是平行四边形和梯形呢?(生举例)

  师:看来平行四边形和梯形在生活中应用很广泛,既然他们的应用如此广泛,我们就来研究什么叫做平行四边形,什么叫做梯形。(板书课题:平行四边形和梯形)

  2。观察图形,直观感知

  师:好了孩子们,先来看看平行四边形有什么特征?梯形有什么特征呢?

  生说:平行四边形左右的边是平行的,平行四边形的上下的边也是平行的。师指图比划,梯形的上下边是平行的。

  师:刚才这位同学说平行四边形的两组对边分别平行,梯形的.一组边平行(老师说时带动作),这是我们通过观察得到的信息,真的是这样吗?下面我们就来验证。

  3。验证猜想。

  师:现在在你们的练习纸上有一个平行四边形和一个梯形,请你拿出工具检查平行四边形和梯形对边是否平行。

  学生活动:验证。

  活动结束师让学生在实物投影上就图说明。

  师:通过刚才的验证他们组有这样的发现,其他组和他的发现一样的请举手,哦,大家都有这样的发现。是不是其他的平行四边形和梯形也具有这样的特点呢?

  4。整体呈现,确定概念。

  (1)平行四边形。

  师:我们首先来看平行四边形。请看屏幕:课件出示三个不同的平行四边形并验证。

  师:验证之后可以证实我们刚才的发现是正确的,是吗?谁再来说一说我们刚才的发现?

  引导学生得出:两组对边分别平行的四边形叫做平行四边形。

  学生读。

  师:闭上眼睛想一想,你的脑子中的平行四边形是什么样的?

  (2)梯形

  师:我们知道了什么叫平行四边形。现在我们来看梯形。请看屏幕:课件出示三个不同的梯形并验证。

  师:现在我们又证实了刚才梯形的发现是正确的,谁再来说一说刚才的发现?

  引导学生得出:只有一组对边平行的四边形叫做梯形。

  师:刚才这个同学发言中有一个特别重要的词,谁发现了?你能解释什么是“只有”吗?

  学生读概念,闭上眼睛想一想梯形的样子。

  5。对比概念,上升理解。

  师:(指板贴平行四边形和梯形图)同学们,既然我们知道了平行四边形和梯形的概念了,谁说说它们的共同点是什么?

  师:但也有不同,谁来说说哪里不同?

  师:加着重号“分别”是什么意思?“只有”是什么意思?能不能不要这两个字?

  三、巩固知识,加深理解

  师:既然大家已经知道了什么叫做平行四边形、什么叫做梯形,那么,请你迅速的判断一下。

  课件出示:下面的图形中.是平行四边形的画“○”,是梯形的画“√”。

  (在完成此题的过程中,如果出现争议,则让学生议一议;无争议则提问:为什么在长方形下面画“○”?为什么说它是特殊的平行四边形?)

  四、探讨四边形间的关系

  师:到现在为止,我们学过了长方形、正方形、平行四边形和梯形,如果分别用一个集合圈来表示一种图形,这几种图形在四边形这个大家庭中应该站什么位置呢?(课件出示集合圈)

  师:你会选择哪一个?为什么?(放大正确集合图)

  师:谁能根据这个图说说它们的关系?(生说)

  五、灵活应用,解决问题

  师:看来,同学们对于各种四边形之间的关系已经很了解了,说到四边形,看。老师这里有一个(课件出示:)可它被数学书挡住了,猜一猜,它可能是什么图形呢?

  继续演示:不可能是……?可能是……?

  不可能是……?可能是……?

  一定是……?为什么?

  师:其实谜底早在我们的意料之中!

  师:通过一次次的猜想,我能感觉对于平行四边形和梯形的了解越来越深入,想挑战吗?

  2.分图形。

  呈现题目:如果在平行四边形里画一条线段,把它分成两部分,这两部分可能是什么图形?画画看吧。

平行四边形教案 篇5

  教学目标设计:

  1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。

  2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。

  3、培养初步的推理能力和合作意识,以及解决实际问题的能力。

  教学重点:探究平行四边形的面积公式

  教学难点:理解平行四边形的面积计算公式的推导过程

  教学过程设计:

  一、创设情境,激发矛盾

  拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽

  教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长

  学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。

  教师继续拉动平行四边形框架,使变形后的`平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底

  边长×邻边长吗?

  今天这节课我们就来研究“平行四边形的面积”。教师板书课题。

  学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?

  二、另辟蹊径,探究新知

  1、寻找根源,另辟蹊径

  教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?

  引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?

  学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?

  2、适时引导,自主探索

  教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?

  (1)学生操作

  学生动手实践,寻求方法。

  学情预设:学生可能会有三种方法出现。

  第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。

  第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。

  (2)观察比较

  刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?

  (3)课件演示

  是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。

  3、公式推导,形成模型

  既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?

  先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。

  A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?

  B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)

  学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:

  长方形的面积 = 长 × 宽

  平行四边形的面积 = 底 × 高

  4、变化对比,加深理解

  引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?

  5、自学字母公式,体会作用

  请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的

  面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?

  三、实践应用

  1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)

  2、看图口述平行四边形的面积。

  3分米 2.5厘米

  3、这个平行四边形的面积你会求吗?你是怎样想的?

  4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?

平行四边形教案 篇6

  教材分析

  本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。

  教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。

  教学目标

  1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。

  2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。

  3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。

  根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”

  教学方法

  《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。

  教学过程

  教学环节

  教学活动

  设计意图

  一、创设情境,引入新知

  二、动手实践、探索新知

  三、尝试练习,提升能力

  四、课堂小结,梳理提高

  以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形

  (一)提出猜想

  【提问】平行四边形的面积可能等于什么?

  受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)

  (二)动手验证

  (课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。

  1.多数学生会选用数格法,得到两个图形面积相等。

  【追问】如果让你测量花坛的面积,你也用数格法吗?

  【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?

  再次验证,并提出活动要求

  (1) 你把平行四边形转化成什么图形?

  (2) 什么变了,什么没变?

  (3) 平行四边形的面积怎么算?

  2.交流反馈(一个演示,一个讲解)

  【提问】看懂这种方法吗?有谁的和他不同?

  (三)动眼观察

  【提问】这两种方法有什么共同之处?

  学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。

  【追问】什么变了,什么没变?

  学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的`高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。

  (小组内、同桌间说一说变化的过程,加深对公式的理解)

  (四)自学课本

  引导学生自学课本,用字母表示公式。

  S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)

  【追问】要求平行四边形的面积,必须知道什么?

  (一)基本技能训练

  (1) 计算平行四边形的面积

  (2) 蓝色线这条高的长度

  (二)解决实际问题

  快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)

  (三)提升思维能力

  1.在方格纸上画一个面积是24平方厘米的平行四边形

  2.如果这个平行四边形的底是4厘米,那么能画出几种?

  这节课你学习了什么,有哪些收获?

  教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。

  感受数格法不受用,从而激发起探究欲望。

  本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。

  打破学生思维定势,感受高和底的对应。

  发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。

  通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。

平行四边形教案 篇7

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

  二、导入新课

  根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  三、讲授新课

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  :如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  说明在含有字母的`式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的“填空”。

  7、验证公式

  学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  (四)应用

  1、学生自学例1后,教师根据学生提出的问题讲解。

  3、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  4、做书上82页2题。

  四、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  五、作业

  练习十五第1题。

  六、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽 平行四边形的面积=底×高

  S=a×hS=ah或S=ah

  课后反思:

【平行四边形教案】相关文章:

平行四边形教案04-01

平行四边形的面积教案11-27

平行四边形面积教案02-09

《平行四边形的面积》教案02-17

《平行四边形的判定》教案06-03

认识平行四边形教案03-05

《平行四边形的认识》教案03-15

数学《平行四边形的面积》教案02-14

平行四边形和梯形教案03-11

数学平行四边形的面积教案02-28