范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-19 12:38:56 教案大全 我要投稿

精选平行四边形教案范文锦集6篇

  作为一名辛苦耕耘的教育工作者,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。我们应该怎么写教案呢?以下是小编为大家收集的平行四边形教案6篇,希望对大家有所帮助。

精选平行四边形教案范文锦集6篇

平行四边形教案 篇1

  教学内容:国标苏教版数学第八册P43-45。

  教学目标:

  1、同学在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

  2、同学在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能丈量或画出平行四边形的高。

  3、同学感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。

  教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。

  教学难点:引导同学发现平行四边形的特征。

  教学准备:配套多媒体课件。

  教学过程:

  一、生活导入。

  1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入学校,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形。

  2、你们还能找出我们生活中见过的一些平行四边形吗?同学回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。

  3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形。

  [评:《数学课程规范》指出:“同学的数学学习内容应当是实际的、有意义的、富有挑战性的。”选择同学熟悉和感兴趣的素材,吸引同学的注意力,激发同学主动参与学习活动的热情,让同学初步感知平行四边形。]

  二、探究特点。

  1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自身来想方法来制作一个平行四边形呢?你们可以先看一看资料袋中有哪些资料,再独立考虑一下准备怎么做;假如有困难的可以先看看学具袋中的平行四边形再操作。

  2、大家已经完成了自身的创作,现在请你们和小组的同学交流一下,说说自身的做法和为什么这样做,然后派代表上来交流。

  同学小组交流,教师巡视,并进行一定的辅导。

  3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。

  (1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?

  (2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才干做一个平行四边形?

  (3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才干得到一个平行四边形?

  (4)用直尺画一个平行四边形。

  ……

  (评:这个个环节的设计,本着同学为主体的思想,敢于放手,让同学的多种感官参与学习活动,让同学在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、同学之间的多向交流,体现那了同学为本的理念。)

  4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?

  (评:本环节的设计,通过在方格纸上画,让同学再次感知平行四边形的一些特点,为下面的猜测、验证和画高作了铺垫。)

  5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么一起特点呢?下面我们一起来研究。

  根据你们在制作平行四边形的时候的体会,你们可以猜测一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的那些方面来猜测它的特征呢?边?角?)

  6、同学小组讨论后提问并板书猜测:

  对边可能平行;

  对边可能相等;

  对角相等;

  ……

  7、你们真行,有了这么多的猜测,那我们能够自身想方法来证明这些猜测是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜测。

  同学每小组上台认领一条猜测,同学分组验证猜测。

  8、经过同学们的努力,我们已经自身验证了其中一条猜测,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?

  9、小组派代表上来交流自身小组的验证方法,其他小组在其完成后进行评价。

  (1) 两组对边分别相等:同学介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。

  (2) 两组对边分别平行:同学汇报的时候假如不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。

  (3) 对角相等:同学说出方法后,教师让同学再自身量一量。

  ……

  最后,教师板书出经过验证特点:

  两组对边分别平行并且相等;

  对角相等;

  内角和是360°

  (评:这个环节的设计蕴涵了“猜测-验证-结论”这样一个科学的探究方法。给同学提供了充沛的自制探索的空间,引导同学先猜想特点,再放手让同学自身去验证和交流,使同学在碰撞和交流中最后的出结论。在这个过程中,同学充沛展示了自身的思维过程,在交流中与倾听中把自身的方法与他人的想法进行了比较。)

  10、完成“想想做做1”。同学独立完成后说说理由。

  三、认识高、底。

  1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的'距离吗?应该怎么量?把你量的线段画出来。

  同学自身尝试后交流。

  2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

  说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。

  3、你能画出另一组对边上的高,并量一量吗?同学继续尝试。

  完成后,让同学指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。

  4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。

  5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标志。假如有错误,让同学说说错在哪里。

  (这个环节的设计,通过同学自身去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,同学学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让同学领悟了高的知识。)

  四、练习提高。

  1、想想做做1,哪些图形是平行四边形,为什么。

  2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。

  3、想想做做3,用七巧板中的3块拼成一个平行四边形。

  出示,你能移动其中的一块将它改拼生长方形吗?

  4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。

  5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。

  (评:在巩固练习中,注意通过同学动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,同学容易接受,并且注意了引导同学去自主探索、合作交流。)

  五、阅读调查

  自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。

  六、全课小结

  今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?

平行四边形教案 篇2

  【学习目标】

  1.能运用勾股定理解决生活中与直角三角形有关的问题;

  2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。

  3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值

  【学习重、难点】

  重点:勾股定理的应用

  难点:将实际问题转化为数学问题

  【新知预习】

  1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.

  【导学过程】

  一、情境创设

  欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?

  二、探索活动

  活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.

  活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

  活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?

  三、例题讲解:

  1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?

  2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?

  【反馈练习】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;

  (2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;

  (3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.

  2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.无法确定

  3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?

  【课后作业】P67 习题2.7 1、4题

  八年级数学竞赛辅导教案:由中点想到什么

  第十八讲 由中点想到什么

  线段的.中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:

  1.中线倍长;

  2.作直角三角形斜边中线;

  3.构造中位线;

  4.构造中心对称全等三角形等.

  熟悉以下基本图形,基本结论:

  例题求解

  【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .

  (“希望杯”邀请赛试题)

  思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.

  注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:

  (1)利用直角三角斜边中线定理;

  (2)运用中位线定理;

  (3)倍长(或折半)法.

  【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中数学创新与知识应用竞赛试题)

  思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点.

  【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC.

  (浙江省宁波市中考题)

  思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.

  【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC).

  若(1)BD、CF分别是△ABC的内角平分线(如图2);

  (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

  (20xx年黑龙江省中考题)

  思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

  注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

  【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

  (20xx年天津赛区试题)

  思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

  注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.

  学历训练

  1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= .

  (20xx年广西中考题)

  2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数).

  (200l年山东省济南市中考题)

  3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 .

  4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm.

  (20xx年天津市中考题)

  5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( )

  A.不能确定 B.2 C. D. +1

  (20xx年浙江省宁波市中考题)

  8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题:

  ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;

  ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;

  ③若所得四边形MNPQ为矩形,则AC⊥BD;

  ④若所得四边形MNPQ为菱形,则AC=BD;

  ⑤若所得四边形MNPQ为矩形,则∠BAD=90°;

  ⑥若所得四边形MNPQ为菱形,则AB=AD.

  以上命题中,正确的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江苏省苏州市中考题)

  9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE.

  (20xx年上海市中考题)

  10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点.

  11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F.

  (1)求证:EF=FB;

  (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系.

  12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 .

  (20xx年四川省竞赛题)

  13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= .

  (重庆市竞赛题)

  1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号)

  15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( )

  A. B. C. D.

  16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( )

  A.1 D.2 C.3 D.

  17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( )

  A. B. C. D.

  18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF.

  (20xx年全国初中数学联赛试题)

  19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.

  (山东省竞赛题)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.

  (1)求证:MB=MC;

  (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.

  (江苏省竞赛题)

  21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1.

  (1)求证AA1+ CCl = BB1 +DDl;

  (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系?

平行四边形教案 篇3

  教学目标

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的'和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

平行四边形教案 篇4

  目标:

  1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

  2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力。

  3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

  教学重点:理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

  教学准备:多媒体、平行四边形纸片. 剪刀、三角尺

  一、创设情境

  同学们,你们喜欢听故事吗?(喜欢)。今天老师说的故事发生在动物村。这是小熊家,它的菜地是这块;这是小兔家,它的菜地是这块。它们觉得这样跑来跑去干活很不方便,于是,小熊就说:“我们俩换块菜地怎么样”?小兔说:“好啊,可我不知道这两块地的面积是否相等?”同学们,你们能帮小兔解决这个问题吗?

  师:你们准备怎样解决呢?

  生:分别算出长方形和平行四边形的面积就行了。

  师:谁来说怎样计算长方形的面积?

  生:长方形的面积等于长乘宽。

  师:怎样列式?(10×6=60平方米)

  师:求长方形的面积有公式很方便,那你会算平行四边形的面积吗?

  生:-------

  师:那么今天我们就来研究怎样求平行四边形的面积.(板书课题:平行四边形的面积)

  二、探究新知

  1、学生尝试解决,

  师:同学们,仔细观察这块平行四边形的菜地,你能想办法把它的面积算出来吗?老师相信你们一定行。

  学生活动,独立尝试解决。

  教师巡视,

  2、反馈学生尝试计算结果。

  师:同学们有结果了吗?

  学生汇报结果。

  师:求一个图形的面积出现了这么多的.结果,可能吗?(不可能)

  到底哪个结果正确呢?让我们一起来验证一下。请同学们拿出平行四边形纸,通过剪、拼的方法把这个平行四边形转化成我们已学过的图形。老师有一个小小的提示:应该沿哪里剪才能把它拼成我们已学过的图形。同桌合作。

  3、学生汇报验证过程。

  师:请你上台把这过程演示一遍。

  学生演示。

  师:我想问一下,你这一剪是随便剪的吗?

  生:不是,是沿高剪的。

  师:哦,这位同学是这样剪的。

  师:不错,谁还有不同的剪法?

  学生汇报。

  师:大家听明白了吗?这两个同学都是沿着平行四边形的一条高剪开,将平行四边形转化成一个长方形。看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。

  师:现在,我请一位同学用老师的教具把平行四边形转化的过程再演示一遍。谁来上台演示?

  师:大家边看边想:转化后的长方形和原来的平行四边形比,什么变了?什么不变?

  生:形状变了,面积没有变。

  师:面积没有变,也就是――(转化后长方形的面积与原来的平行四边形的面积相等。)

  师:非常正确!

  师:谢谢你开了个好头。接下来,请小组讨论:转化后,长方形的长和宽分别与原来的平行四边形的底和高有什么关系?

  师演示教具。

  生:转化后的长方形,长与原来的平行四边形的底相等,宽与原来平行四边形的高相等。

  师:说得真好。那现在平行四边形的面积你们会算了吗?

  生:平行四边形的面积等于底乘高。

  师:不错。如果用S表示平行四边形的面积,用a 表示底,用h表示高,平行四边形的面积公式用字母怎样表示呢?

  学生说完,师完成板书:长方形的面积=长×宽

  平行四边形的面积=底×高

  用字母表示:S=a×h=ah

  师:同学们真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲

  请同学们打开数学书81页,把平行四边形的面积公式补充完整。这个面积公式适用于所有的平行四边形。

  师:刚才这三位同学都表现得很好。接下来,我再请一位同学来说说平行四边形的面积是怎样推导出来的,(出示课件)你会填吗?

  4、解决问题

  师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,我们再来看看原来同学们写的这几个结果哪一个才是正确的?那现在你们能为小熊、小兔俩解决问题了吗?

  生:能,小熊和小兔的菜地可以交换,因为这两块地的面积一样大。

  师:谢谢你们为小熊和小兔解决了交换菜地的问题。

  师:解决了小熊和小兔的问题,接下来老师要同学们算一算我们学校花坛的面积。

  出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生尝试练习,生上台板演。

  师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?

  生:底和高。

  师:不错,需要知道两个条件,就是底和高。只要知道它的一组底和高就能求面积了。

  三、巩固练习

  1、计算下列图形的面积。

  师:谁来说第1个图形的面积怎么求?第2个图形呢?刚才这两个图形的面积真是太容易算了,我们来一个稍为难点的图形,这个图形有点不一样。同学们有没有信心算出它的面积?(有)请同学们写到课堂作业上。

  生上台板演。

  师:同学们,算完了吗?我们来看看这位同学做对了没有?

  师:今后我们在求平行四边形的面积时,要看清楚它的底和高一定要相对应。不能张冠李戴。

  师:同学们,如果我给出底是12厘米相对应的高,你们还能用另外一种方法算出它的面积吗?(能)谁来说?

  2、课本82页第2题。

  师:接下来,请同学们做课本82页的第2题。你能想办法求出它的面积吗?你打算怎么做? 女生算第1个图形,男生算第2个图形。我们比一比

  学生上台展示。,

  3、考考你。

  师:比完了,接下来老师又要出题目考你们了。

  4、小小设计师。

  师:同学们,想不想当设计师。如果让你设计一个黑板报栏目,要求面积是24平方分米,那么底和高各是多少分米?(底和高都是整数)

  四、小结

  师:今天这节课的知识你们是怎样学会的呢?

  师:今天同学们学得很好。好在哪里呢?同学们不是等待,而是动脑筋,想办法。敢于把新问题转化成已有的知识来解决。

平行四边形教案 篇5

  教学内容:国标苏教版数学第八册P43-45。

  教学目标:

  1、学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。

  2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。

  教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。

  教学难点:引导学生发现平行四边形的特征。

  教学准备:配套多媒体课件。

  教学过程:

  一、生活导入。

  1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形。

  2、你们还能找出我们生活中见过的一些平行四边形吗?学生回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。

  3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形。

  [评:《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。]

  二、探究特点。

  1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自己来想办法来制作一个平行四边形呢?你们可以先看一看材料袋中有哪些材料,再独立思考一下准备怎么做;如果有困难的可以先看看学具袋中的平行四边形再操作。

  2、大家已经完成了自己的创作,现在请你们和小组的同学交流一下,说说自己的做法和为什么这样做,然后派代表上来交流。

  学生小组交流,教师巡视,并进行一定的辅导。

  3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。

  (1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?

  (2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才能做一个平行四边形?

  (3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才能得到一个平行四边形?

  (4)用直尺画一个平行四边形。

  ……

  (评:这个个环节的设计,本着学生为主体的思想,敢于放手,让学生的多种感官参与学习活动,让学生在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、学生之间的多向交流,体现那了学生为本的理念。)

  4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?

  (评:本环节的设计,通过在方格纸上画,让学生再次感知平行四边形的一些特点,为下面的猜想、验证和画高作了铺垫。)

  5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么共同特点呢?下面我们一起来研究。

  根据你们在制作平行四边形的时候的体会,你们可以猜想一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的那些方面来猜想它的特征呢?边?角?)

  6、学生小组讨论后提问并板书猜想:

  对边可能平行;

  对边可能相等;

  对角相等;

  ……

  7、你们真行,有了这么多的猜想,那我们能够自己想办法来证明这些猜想是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜想。

  学生每小组上台认领一条猜想,学生分组验证猜想。

  8、经过同学们的努力,我们已经自己验证了其中一条猜想,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?

  9、小组派代表上来交流自己小组的验证方法,其他小组在其完成后进行评价。

  (1) 两组对边分别相等:学生介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。

  (2) 两组对边分别平行:学生汇报的时候如果不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。

  (3) 对角相等:学生说出方法后,教师让学生再自己量一量。

  ……

  最后,教师板书出经过验证特点:

  两组对边分别平行并且相等;

  对角相等;

  内角和是360°

  (评:这个环节的设计蕴涵了“猜想-验证-结论”这样一个科学的探究方法。给学生提供了充分的自制探索的空间,引导学生先猜测特点,再放手让学生自己去验证和交流,使学生在碰撞和交流中最后的'出结论。在这个过程中,学生充分展示了自己的思维过程,在交流中与倾听中把自己的方法与别人的想法进行了比较。)

  10、完成“想想做做1”。学生独立完成后说说理由。

  三、认识高、底。

  1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。

  学生自己尝试后交流。

  2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)

  说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。

  3、你能画出另一组对边上的高,并量一量吗?学生继续尝试。

  完成后,让学生指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。

  4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。

  5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标记。如果有错误,让学生说说错在哪里。

  (这个环节的设计,通过学生自己去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,学生学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让学生领悟了高的知识。)

  四、练习提高。

  1、想想做做1,哪些图形是平行四边形,为什么。

  2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。

  3、想想做做3,用七巧板中的3块拼成一个平行四边形。

  出示,你能移动其中的一块将它改拼成长方形吗?

  4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。

  5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。

  (评:在巩固练习中,注意通过学生动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,学生容易接受,并且注意了引导学生去自主探索、合作交流。)

  五、阅读调查

  自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。

  六、全课小结

  今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?

平行四边形教案 篇6

  本单元教学平行四边形和梯形的特点以及它们的高。学生在第一学段直观认识了平行四边形,而梯形则是第一次学习。全单元的内容分成两部分编排: 先教学平行四边形,再教学梯形。编写的一篇你知道吗介绍了平行四边形容易变形的特性及其在日常生活中的应用。安排的一道思考题让学生体会应用图形的平移和旋转可以把平行四边形剪拼成长方形、把梯形剪拼成长方形、把长方形剪拼成三角形。

  1、 让学生通过做图形发现平行四边形和梯形的特点。

  《标准》要求学生通过观察、操作,认识平行四边形和梯形。短短一句话,指出了学生学习图形特征的方法和途径: 要以发现为主,而不是仅靠接受。

  (1) 第43页例题要求学生凭已有的直观认识想办法做一个平行四边形,他们做的方法一定很多,教材里呈现的只是其中的一部分,很可能还有别的做法。做图形的目的是体会平行四边形的特点,教学时要注意四点:

  ① 课前要有充分的物质准备,如小棒、钉子板、方格纸这些材料可以是教师准备的,也可以是学生准备的。有些材料是预设的,有些材料是教学中即时想到的。

  ② 在做中发现特征,要让学生说说做的体会。做图形的目的是感受图形的形状特征,所以,要组织学生交流做法与思考。如用小棒摆平行四边形,上、下两根小棒一样长,左、右两根小棒也一样长。在方格纸上画平行四边形,上、下两条边互相平行,左、右两条边也互相平行

  ③ 要抓住平行四边形的主要特征进行教学。平行四边形有许多特点,如对角相等、邻角和是180等。例题的教学目的是使学生建立平行四边形的概念,所以要抓主要特点两组对边分别平行,两组对边长度分别相等。至于其他特点,不必提出过多的要求。

  两组对边分别平行是平行四边形的本质特征,必须使学生充分体会。不仅凭眼睛看,还要用画平行线的工具和方法进行验证。两组对边长度分别相等是平行四边形的重要特点,在以后计算面积时经常用到。也要让学生通过度量发现或验证。

  ④ 要促进学生在交流中集思广益、互补共享。每个学生的发现往往是点滴的,用小棒摆容易发现对边相等,不注意对边平行;用直尺画容易体会对边平行,不注意长度相等。因此,相互倾听、相互评价、相互吸收、共享发现成果尤为必要。听听别人的发现,看看自己做的平行四边形是不是也这样,就能做到互补共享。教师参与学生一起交流,要帮助学生提高语言水平,如把上、下两条边互相平行,左、右两条边互相平行概括地说成两组对边分别平行。

  (2) 在活动中体会长方形和平行四边形的关系,进一步认识这两种图形。想想做做第3、4题都是把一个平行四边形通过分移拼的活动变成一个长方形,让学生一方面体会到平行四边形和长方形的形状不相同,另一方面体会到变化前后的两个图形的面积相同。这些都为以后探索平行四边形面积的计算方法作了准备。第6题把4根饮料管先串成一个长方形,再拉成一个平行四边形。这些操作活动帮助学生发现长方形和平行四边形都是四边形,两组对边都互相平行且长度相等。它们的不同点主要表现在四个角上。

  (3) 第一次教学梯形,先让学生观察屋顶的一个面、梯子、清洁箱的抛物口、足球门的侧面,形成对梯形的直观感知。然后通过做梯形体会它的特点。教学线索和主要活动与平行四边形基本相同,仅有两点变化: 一是白菜卡通的提问方式变了,不是问梯形有什么特点,而是问梯形与平行四边形比较,有什么区别;二是多了辣椒卡通在回答问题。这些变化是引导学生寻找梯形的本质特征,帮助他们建立准确的梯形概念。

  学生有想办法做出一个平行四边形的活动体验,现在做一个梯形,教学可以放得更开一些。如做的材料自己寻找、做的方法自己设计,并要求学生通过做了解梯形的特点。在交流梯形的特点时,要紧扣教材中的问题进行,突出梯形只有一组对边平行。

  2、 精心设计高的教学。

  四年级(上册)教学平行的时候,曾经让学生在两条互相平行的直线中间画几条与两条直线都垂直的线段,通过度量还发现了画出的所有垂直线段长度都相等。那时候让学生做这道题的目的是体会平行与垂直是不同的位置关系。并通过平行线之间的垂直线段长度相等,体会两条平行的直线永远不会相交。这道题又可以成为本单元教学平行四边形和梯形的高的起点。

  (1) 平行四边形有两组互相平行的对边,有两条长度不等的高。教材把两条高分两步教学,先讲平行四边形上、下一组对边间的高,再讲左、右一组对边间的高。

  第44页例题要求学生量出平行四边形上、下一组对边间的距离。这两条边之间的距离是它们之间垂直线段的长度,量距离要先画出垂直线段。画垂直线段的方法一般是在一条边上确定一点,从这一点向对边作垂线。学生经过这样的过程,理解教材中关于平行四边形高的描述式定义就有了感性认识。所以,教学时要引导学生思考什么是两条红线间的距离,并画一画两条红线间的.垂直线段。

  试一试的左边一题仍然是上、下两条边之间的高,通过这题巩固对平行四边形高的初步认识。同时看到,画高的时候要在上面一条边上任意确定一点,这任意一点也可以是上面一条边的一个端点,即平行四边形的一个顶点。右边两题是左、右两条边之间的高,要让学生想一想: 图中的红线是平行四边形的高吗,为什么?抓住高的本质特征思考,从而进一步理解平行四边形的高。

  (2) 第47页教学梯形的高,教材的编写线索和安排的教学活动与教学平行四边形的高基本相同,有利于学生利用已有经验学习新知识。不同的地方有两处: 一是结合教学梯形的高讲了梯形的上底、下底和腰。二是例题里的梯形的底是上、下两条互相平行的边,试一试里出现底是左、右两条互相平行的边的梯形,还有直角梯形。直角梯形的高是垂直于底的那条腰。与画平行四边形的高相同,画梯形的高要在一条底上任意选一点。如果选的点是梯形的顶点,那么这条高把梯形分成一个三角形和一个梯形;如果选的点不是梯形的顶点,那么这条高把梯形分成两个较小的梯形。第48页第3题就为此而设计。

【平行四边形教案】相关文章:

平行四边形教案04-01

《平行四边形的判定》教案06-03

认识平行四边形教案03-05

《平行四边形的认识》教案03-15

平行四边形面积教案02-09

《平行四边形的面积》教案02-17

平行四边形的面积教案11-27

数学平行四边形的面积教案02-28

平行四边形和梯形教案03-11

平行四边形面积的计算教案03-03