范文资料网>反思报告>教案大全>《五年级教案《解决问题》

五年级教案《解决问题》

时间:2023-03-02 13:11:48 教案大全 我要投稿
  • 相关推荐

五年级教案《解决问题》

  作为一名教师,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!以下是小编整理的五年级教案《解决问题》,仅供参考,大家一起来看看吧。

五年级教案《解决问题》

五年级教案《解决问题》1

  一、课前游戏:

  文字游戏——说反话、做动作

  左、加法、乘法、上来、买进、给你、送出去、往南

  二、导入新课:

  1、快速抢答:

  课件出示:

  (1)我送给小红4张邮票,现在我有12张,我原来有( )张邮票。

  (2)一杯果汁再倒入40毫升后是200毫升,原来这杯果汁有( )毫升。

  (3)把甲杯里40毫升果汁倒给乙杯后,现在甲杯有100毫升,甲杯原来有( )毫升。

  同学们,你们为什么答得那么快呀?你能选一个说说你是怎么想的吗?你发现这几个题目有什么共同点吗?

  引导学生说出这几题都是已知现在,求原来。我们可以怎么想呢?相机板书:

  原来 倒过来 现在

  2、课件出示逆运算题:( ) ( ) (20)

  师:你能挑战一下这一题吗?

  学生试答,让他们说说自己是怎样想的?

  引出倒过来推算

  师:算出来的得数10对不对?我们有什么办法证明?

  生:顺着计算一遍。

  引导学生口头验算结果,然后回答第2小题。

  ( ) ( ) (54)

  3、小结。

  师:今天我们要学习的策略就是……?

  生答师板书:倒推

  三、教学例题:

  (一)、教学例

  1,学会基本的倒推思想。

  1、课件逐步出示例1情境图,生观察,并相机阅读条件和问题。

  师:你准备用什么策略来解决这个问题?(生自由汇报)

  师:你准备先从哪个条件入手解决这个问题?(生汇报)

  师:你准备怎么解决这个问题?(生自由汇报思考过程)

  2、画杯子图倒过来分析证明。(课件画图演示过程)

  3、填表分析。

  师:现在甲杯和乙杯各有多少毫升?你是怎么想的?原来甲杯和乙杯各有多少?你又是怎么想的?

  4、列式计算。

  师:你准备怎么列式计算?先算什么?再算什么?

  板书: 400÷2=200(毫升)

  甲杯 200+40=240(毫升)

  乙杯 400-240=160(毫升)

  师:为什么先算400除以2得到200,第二步为什么用200加40?算乙杯除了可以用400减去240,还可以怎样想?(板书:或200—40=160)

  5、学生检验。

  师:这个答案对不对,咱们想个办法证明一下。

  6、师:同桌说说解决这道题目的策略。(学生小组交流)

  7、出示练习十六第1题。(设计情境,收集上海世博会纪念卡)

  师:你准备怎样解决这个问题,用怎样的策略?

  学生根据题目中的条件信息,独立列式解答,教师巡视,注意后进生的'答题情况,再汇报交流思考过程。

  师:第一步用60除以2算的是什么?根据什么条件这样算的?(生答)

  统计正确率,表扬与鼓励同步。

  师:有些题目在解答之前,我们可以先把重要的信息先整理出来。

  (二)、教学例2,学习如何收集、整理信息,再倒过来推想。

  1、课件播放例题2。

  读题,出示学习建议。

  学生同桌合作学习,教师巡视,挑选代表性作业实物投影交流。

  生汇报倒过来推想的策略,教师小结:

  课件倒过来逐个出示:

  探索简便思考过程

  师:我们也可以像上课开始做的那道逆运算题目一样,把题目简单化。

  课件出示:( ) ( ) (52)

  师:你会倒过来推算吗?(生口答)

  2、列式计算:

  师:先在小组里说说自己的想法,再列式解答。

  生答师板书方法一:52+30-24=58(张)

  师:还有什么思考方法可以找出答案?

  师:又收集的比送给小军的少6张,现在比原来就怎么样?

  生答师板书方法二:30-24+52=58(张)

  3、验算证明:

  师:根据求出的答案,再顺推过去,看看剩下的是不是52张?

  生口头检验。(58加收集的24张就有82张,送给小军30张减去30就还剩52张)

  4、小结:

  师:不管用哪种计算方法,咱们在解题之前的思考过程都用到了什么策略?

  生:倒过来推想的策略

  师:看来,倒过来推想的策略还真的很重要呢!

  (三)、教学练一练题型,理解“一半多一些”题目的思考策略。

  1、课件播放练一练题目。

  (1)学生自由读题,说说通过读题,哪些地方有疑惑?

  预设:学生会说出“一半多一张”不太明白,教师提示:你能用两个动作来解释一下这句话吗?提供一叠画片,操作演示,帮助学生分析理解。

  结合学生的理解,逐步出示题目的变化信息,引导学生用简单的箭头图来表达。

  (2)师:根据摘录整理到的信息,你会倒过来推想吗?

  生汇报倒过来思考的过程,师相机课件出示。

  (3)师:根据这种倒过来推想的方法,你会列式计算吗?

  生独立列式解答,再汇报交流思考过程。

  (4)检验答案。

  四、巩固应用

  1、选一选:出示小刚买一个铅笔盒用去所带钱的一半,买一本笔记本又用去2元,这时还剩16元,小刚原来带了( )钱。(此题的安排目的主要是让学生能够巩固对“一半”题目类型的理解,并引导学生做选择题的方法还可以用答案代入法,其实也体现了学生的检验过程和与顺推思路的比较。)

  2、估一估、比一比:设计去苏州乘火车到上海参观世博会情境题,一种情况是家中8:20出发,到达苏州火车站约什么时刻?另一种情况是火车发车时间为8:20,从家到常熟客运站30分钟,再到苏州汽车站为1小时,从汽车站到火车站还需5分钟,为了不误车,最迟什么时候从家中出发?(让学生通过比较,进一步理解什么情况下适合用倒推策略来解决实际问题)

  五、总结谈话:

  今天你有什么收获?

  六、思维拓展:

  1、我来吟诗:古人用倒推作诗

  2、尝试做思考题“李白喝酒”。随音乐出示题目,教师先进行分析题意。

  借助箭头变化图帮助学生理解,让学生用今天所学的策略尝试解决。

  生课后讨论交流,然后汇报交流。夺取智慧星。

五年级教案《解决问题》2

  解决问题(1)第 课时 课型 新授

  学习目标 知识与技能:经历运用不同的估算方法来解决超市购物问题的过程,体会用估算解决购物问题的简便性

  过程与方法:学会解决乘加、乘减实际问题的方法,掌握乘加、乘减的运算顺序,并能准确地进行计算。

  情感态度与价值观:在解决有关小数的实际问题的过程中,体会小数乘法的应用价值。

  教学重点:会用估算解决实际问题,掌握乘加、乘减的运算顺序。

  教学难点:准确计算乘加、乘减

  教具运用:课件

  教学过程

  一、 情境导入

  1、 出示例8主题图

  妈妈带100元去超市购物。妈妈买了2袋大米,每袋30.6元。还买了0.8㎏肉,每千克26.5元。剩下的钱还够买一盒10元的鸡蛋吗?够买一盒20元的吗?

  2、 引导学生读题,列表整理题中的数学信息

  单价 数量 总价

  大米 30.6 2

  肉 26.5 0.8

  鸡蛋 10 1

  20 1

  3、 理解题意,明确解题思路

  妈妈买了2袋大米和一块肉,还想买一盒鸡蛋。想要知道钱数够不够 ,只要把买到的所有商品的价格加在一起,与100进行比较就能知道结果,这样的题用估算的方法比较简便。

  二、分析与解答

  1、自主尝试解答

  学习要求

  (1) 请大家独立解答这个问题,在解答完之后想想还有其他的方法。

  (2) 想一想怎样才能把自己的解题方法给同学们讲清楚。

  学生独立完成

  2、 交流分析

  列举学生的解法,学生可能出现。

  ? 30.6×2=61.2(元)26.5×0.8=21.2(元) 61.2+21.2=82.4(元)

  100-82.4=17.6(元)因为10<17.6<20,所以够买一盒10无的鸡蛋,不够买一盒20元的鸡蛋。

  ? 1袋米不到31元,2袋一不到62元,肉不到27元,再买一盒10元的鸡蛋,总共不超过62+27+10=99(元),所以够买一盒10元的鸡蛋,不够买一盒20元的鸡蛋。

  师:第一种方法大家读懂了吗?

  生解释想法。

  师:第二种方法呢?

  学生阅读,并进行解读交流。

  小结:用“上舍入”的方法求得的和一定大于实际数。用“下舍入”的方法求得的和一定小于实际数。

  师:比较一下,你更喜欢哪种方法?

  学生汇报:我喜欢估算这种方法,因为它使计算更加的简单。

  3、用计算器验证估算结果的正误

  2袋大米的价钱 + 0.8kg肉的价钱 + 一盒鸡蛋的价钱

  30.6×2=61.2(元) 26.5×0.8=21.2(元)10元或20元

  三种商品的`总价:

  (1)买10元的鸡蛋:61.2+21.2+10=92.4(元)

  (2)买20元的鸡蛋:61.2+21.2+20=102.4(元)

  因为

  ? 92.4<100,剩下的钱还够买一盒10元的鸡蛋。

  ? 102.4>100,剩下的钱不够买一盒20元的鸡蛋.

  所以估算的结果是正确的。

  三、回顾反思

  师:回顾这个解题过程,我们都做了什么?

  学生交流汇报的同时教师板书。

  第一步:理解整理(表格);

  第二步:分析解答;

  第三步:验证反思。

  师总结:大家总结得很好,我们就是按照这样的过程解题的,这的确是一种解决问题的好办法。

  四、巩固提升

  1、出示:有5种商品,它们的平均价格是9.86元,期中前4种商品的平均价格是5.37元,第5种商品的价格是多少钱?

  2、学生运用刚才的过程解题,然后交流想法

  分析:根据5种商品的平均价格是9.86元,可以求出5种商品的价格和。同理,根据前4种商品的价格和。用5种商品的价格和减去前4种商品的价格和便可求出第5种商品的价格。

  3、 汇报解答方法

  9.86×5-5.73×4

  =49.3-22.92

  =26.38(元)

  答:第5种商品的价格是26.38元。

  4、完成练习四,第2题。

五年级教案《解决问题》3

  教学目标:

  1、通过“商店买东西”的情境,灵活运用有关除法知识解决实际生活中简单的问题。

  2、通过独立探索、小组合作的方式学习,进一步加强对2——6的乘法口诀计算除法的掌握。

  3、调动学生的学习兴趣,引导学生获得有价值的信息,培养学生解决问题得能力。

  4、培养学生勇于表达自己的`想法,认真倾听他们的意见。在问题处理中,体验成功,培养数学学习兴趣。

  教学重点:

  运用表内除法知识解决生活中的简单问题,做到学与用的有效结合。

  教学难点:

  获取有价值的信息解决问题。

  教学准备:

  多媒体课件等。

  教学过程:

  一、探究新知

  1、创设情境

  六一儿童节快到了,明明想要给自己买一些新玩具,可是面对那么多好玩的商品,明明不知道手中的零花钱能买多少个玩具,同学们,你们愿意帮助明明吗?现在,就让咱们一起跟着明明去商店看一看吧!(出示教材图片)

  师:从图中你知道了哪些信息?

  预设:知道了一些商品的价钱。玩具熊6元1个,地球仪8元一个,皮球9元1个。汽车的价钱被遮住了。要帮助明明求出56元钱可以买几个地球仪。

  师:要解决这个问题,需要哪些信息呢?

  (小组交流汇报:需要知道地球仪的价钱,从图中可以知道一个地球仪是8元钱)

  2、合作交流,解答问题。

  (1)请同学们思考,根据以上的数学信息应该如何解决问题。小组合作,讨论解决的方法,教师巡视指导。

  (2)汇报

  预设:一个地球仪8元,求能买几个就是求56元里面有几个8元。

  这属于平均分问题,应该用除法计算。

  如何列式计算呢?

  56÷8,想七八五十六,商是7。

  3、独立思考,验证结果。

  同学们真聪明,这么快就解决了问题,那么我们做得正确吗?你怎么知道的?

  (一个地球仪8元,7个一共78=56元,所以是对的。)

  师:很好,我们可以用乘法来验证除法计算的结果是否正确。

  4、想一想,如果24元买了6辆小汽车,一辆小汽车多少钱?

  师:谁愿意交流一下,你是怎么计算小汽车辆数的?

  预设:(1)24元钱可以买6辆车,就是将24平均分成4份,求每份是多少。

  (2)也是用除法计算。可以列式24÷6=4(元)

  (3)一辆4元,6辆就是46=24(元),计算正确。

  师:根据图中的信息,你还能够提出其他数学问题并解答吗?

  小组内2人合作,一问一答,其他小组成员看一看他们的回答是否正确,错误的相互改正,看谁提出的问题多,谁发现的问题多。

  二、巩固练习

  1、完成“练习九”第2题。

  先组织学生观察情境图,收集图中的数据信息,再让学生独立解决问题,并指名说一说解决问题的思路和方法。

  2、完成“练习九”第4题。

  (1)出示图片,学生观察后说知道了哪些信息。

  (2)独立思考解决第1、2小题分别需要哪些信息,应该如何解答。再在小组内探讨根据所知道的信息还能提出哪些数学问题。

  3、完成“练习九”第6题。

  出示情境图,学生观察图中的信息,分小组讨论,看能知道哪些信息。

  能提出哪些用乘法或除法解决的问题呢?说一说,算一算。

  三、课堂小结

  同学们,我们在这节课里提出了许多数学问题,也解决了这些问题,说明数学就在我们身边,生活中处处有数学。

  板书设计:

  第3课时 解决问题

  56÷8=7(个)

  56=30(元)

  36÷9=4(个)

五年级教案《解决问题》4

  教学目标:

  1、在现实生活的情境中,培养学生提出问题、解决问题的能力。

  2、培养学生探索知识的意识和能力,进一步掌握小括号的`作用和用法。

  3、培养学生收集整理信息的能力。培养学生环保教育。

  教学重点:

  用不同的方法解决问题,体会解决问题策略的多样性,提高解决问题的能力。

  教学过程:

  一、谈话导入,激发兴趣

  前几节课我们已经学习了两步计算的题目,并且知道了小括号的用法今天老师先带小朋友到草地上去看看好吗?不过看了以后还要解决几个问题。

  1、一个笔记本8元,一枝钢笔13元,小利买了9个笔记本和一枝钢笔一共花了多少元?

  2、一个篮球7元,一个羽毛球4元,小明买了一个篮球和7个羽毛球,一共花了多少元?

  3、一个足球9元,小军拿了100元,买了7个足球,应找回多少元?

  4、有70名游客来北京旅游,有5辆面包车,每辆车上坐8人,其余的游客坐大客车,坐大客车的游客有多少人?(旅游中要注意环保)

  指名学生解答

  二、课堂作业,巩固新知

  第1题:指名学生看图说题意,让学生独立完成,注意解答格式。最后集体订正。

  第2题:让学生读题后独立完成,集体订正。

  第3题:让学生读题说题意后列式解答。

  第4题:让学生读题说题意后列式解答。

  第5题:让学生在练习本上用脱式完成。

  第6题:说题意,列综合算式完成,集体订正。

  第7题:让学生说一说自己的想法,然后独立完成订正。

  第8题:读懂题后,独立完成,订正时说一说解题过程。

  三、总结:根据练习情况加以总结。

五年级教案《解决问题》5

  教学内容:

  P33解决问题

  教学目标:

  1、通过组织学生讨论,充分让学生感受到在解决实际问题时,要根据实际情况取商的近似值。

  2、培养学生灵活应用的意识。

  教学过程:

  一、引入新课。

  谈话引入:生活中处处蕴含着数学问题。你能帮助小强的妈妈,王阿姨,解决她们遇到的问题吗?

  (教师可根据实际情况,将例题创设为实际情景)。

  二、组织学生辩论,以辩明理。

  1、出示例12

  ①学生独立思考,解答,(展示可能出现的三种答案,6.25个、6个、7个)。

  ②组织学生进行辩论,鼓励学生说出自己的.看法及理由,大胆地与同学进行交流。

  同学们 充分 发表意见,明确瓶数取整数,6.25按四舍五入法应舍去25,但实际装油时,6个瓶子不够装,因此瓶数应比计算结果多1个。

  2、再来看看王阿姨遇到的问题,如何解决?

  ①先独立思考。

  ②全班交流答案,组织学生讨论,强调以理服人,使学生明确,盒数取整数,16.66…计算结果按四舍五入法本应进1,但实际包装时,丝带不够包装第17个,因此个数应比计算结果少1。

  3、生谈感受。

  师小结:看来,四舍五入取近似值只适用于一般情况,在解决问题时,有时要根据实际情况取商的近似值,有时要多一点,有时要少一点。

  4、生质疑

  三、运用新知,解决问题。

  1、P33“做一做”

  如何处理的结果?为什么这样处理?

  2、P35 6、7 生独立解答,全班交流。

五年级教案《解决问题》6

  设计说明

  1.创设生活化的情境,学生活中的数学。

  数学来源于生活,生活中处处有数学。本节教学内容跟生活密切相关,五年级的孩子已经积累了一定的生活经验,教学设计利用课件出示例题,为学生创设充满趣味的学习情境,激发学习兴趣,同时让他们体验到了数学的价值。

  2.放手让学生探究,把课堂还给学生。

  《数学课程标准》的一个重要理念就是让学生成为学习活动的主人。在教学中要尽量放手让学生探究,只有这样才能把数学知识转化为自己的知识。本设计放手让学生自己探究“去尾法”和“进一法”的取值方法。之后,让学生列举出生活中运用“去尾法”和“进一法”的例子,最后引导学生总结出这两种方法的使用都要根据实际情况,这样的设计能使学生更好地理解和掌握知识。

  课前准备

  教师准备PPT课件

  教学过程

  ⊙复习旧知,引入新课

  1.说说小数除法的计算方法和求商的.近似数的方法。

  2.揭题:这节课我们一起应用以前学习的小数除法的知识来解决问题。(板书课题)

  设计意图:通过回顾旧知,直接引出新课内容,激发了学生解决问题的欲望。

  ⊙讨论交流,探究新知

  1.教学例10(1),学习“进一法”。

  (1)理解题意,列式计算。(课件出示例题和情境图)

  引导学生交流题中的数学信息,理解题意,并独立列式计算。

  2.5÷0.4=6.25(个)

  (2)设疑:我们求得的结果是6.25个瓶子,在我们的生活中能找到6.25个瓶子吗?符合生活实际吗?根据你的生活经验,这里求“需要准备几个瓶子”,得数应该保留什么数?用什么方法取近似数?

  (3)小组讨论:根据实际情况,这里需要准备几个瓶子?为什么?

  (4)学生汇报讨论的情况:瓶子不能有6.25个,应取整数。按“四舍五入”法取近似数,结果应是6个,但是6个瓶子不能装下2.5kg香油,只能装2.4kg,剩下的0.1kg还需要1个瓶子,所以需要7个瓶子。

  (5)小结:根据实际情况取近似数时,不管省略部分首位上的数字是多少,都向前一位进1的这种方法,叫做“进一法”。

  2.教学例10(2),学习“去尾法”。

  (1)学生独立审题,分析题目,并列式解答。(课件出示例题和情境图)

  王阿姨用一根25m长的红丝带包装礼盒。每个礼盒要用1.5m长的丝带,这些红丝带可以包装几个礼盒?

  25÷1.5=16.666…(个)

  (2)设疑:礼盒数能用小数来表示吗?

  (3)小组讨论:用“四舍五入”法取近似数,结果是17个礼盒,但包装17个礼盒,丝带够吗?为什么?

  [小组讨论,并向全班汇报:因为1.5×17=25.5(m),丝带不够,所以这里不管小数部分是多少都要舍去,取整数16,即只能包装16个礼盒]

  (4)小结:在这道题里,出现了满5也要把尾数舍去的情况,我们把这种取近似数的方法叫做“去尾法”。

  3.回顾反思,明确方法。

  (1)观察例10中的两道题,小组讨论一下:对于取商的近似数,你们又有了哪些新的认识?

  (2)小组讨论后选代表汇报,互相补充。

  ①第(1)小题,不管小数部分是多少,都要进1取整数。

  ②第(2)小题,不管小数部分是多少,都要舍去尾数取整数。

  (3)师生共同总结:在解决实际问题时,要根据实际情况取商的近似数。

  4.举例升华。

  师:你能举出生活中运用“进一法”和“去尾法”取近似数的例子吗?

  设计意图:培养学生思考问题的习惯,使学生充分理解题意,掌握解决问题的方法。

  ⊙巩固练习,拓展应用

  1.幸福小学有382人要去秋游,每辆客车限乘40人,需要几辆客车?

  2.一根长10.5米的木料,先截取等长的5段,共8.5米,剩下的要截成0.8米长的小段,最多还能截出几段这样长的木料?

  设计意图:及时巩固,使学生掌握解决问题的方法,发展学生的思维。

  ⊙全课总结

  通过这节课的学习,你有什么收获?

  ⊙布置作业

  教材41页7、8题。

  板书设计

  解决问题

  例10 (1)2.5÷0.4=6.25(个)≈7(个)(进一法)

  (2)25÷1.5=16.666…(个)≈16(个)(去尾法)

  根据实际情况,选用合适的方法取商的近似数。

五年级教案《解决问题》7

  设计说明

  《数学课程标准》明确指出:“借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。”本课时基于教材的编排意图和本节课的教学目标,在教学设计中尽量联系生活实际创设情境,使学生感受数学知识与实际生活的密切联系,采取半扶半放的方式让学生主动参与解决问题的过程。在问题解决的环节设计上,引导学生运用几何直观帮助分析数量关系,找出解决问题的思路和方法,同时也为后面理解分数乘法的意义和解决问题积累一定的方法和经验。

  课前准备

  教师准备PPT课件

  学生准备习题卡片

  教学过程

  ⊙复习旧知,引入新课

  师:前面我们已经掌握了分数加减法的`计算方法,下面大家来做几道题,看谁做得又快又好。

  1、分数的基本性质是什么?怎样进行通分?

  2、先计算,再说说分数加减混合运算的计算方法。

  +-+

  揭题:同学们对前面学过的知识掌握得很好,下面我们来看看乐乐留给我们的问题。(板书课题)

  ⊙讨论交流,探究新知

  课件出示例3。

  1、阅读与理解,明确题意。

  师:同学们,你从这道题中获得了哪些信息?(生填写信息卡)

  乐乐喝了()次牛奶。

  第一次:一杯纯牛奶,喝了()杯。

  第二次:兑满热水,又喝了()杯。

  问题:一共喝了多少杯纯牛奶?

  2、分析题意,画图解决问题。

  (1)找出解决问题的关键。

  师:要想求乐乐一共喝了多少杯纯牛奶,就要知道什么?

  生:要知道乐乐第一次和第二次分别喝了多少杯纯牛奶。

  师:乐乐第一次喝了多少杯纯牛奶?能直接求出来吗?

  生:能,一杯纯牛奶,乐乐喝了半杯,也就是喝了杯。

  师:乐乐第二次喝了多少杯纯牛奶?能直接求出来吗?(不能)

  师:同学们发现解决这道题的关键了吗?

  生:发现了,关键就是求出乐乐第二次喝了多少杯纯牛奶。

  (2)画图表示关键问题之间的关系。

  ①组织学生用自己喜欢的方式画图。

  师:下面我们用画图的方法来找出解决这道题的关键,也就是表示出乐乐第二次喝了多少杯纯牛奶。

  ②画图理解并汇报。

  第一次喝了杯纯牛奶。

  加满水,水是杯,纯牛奶还是杯。

  又喝了杯,这杯里,一半是纯牛奶,一半是水。

  (画图提示:用一个长方形代表杯子,涂色部分代表纯牛奶或纯牛奶和水的混合物)

  预设

  生1:第一次喝了杯纯牛奶,还剩杯纯牛奶。

  生2:加满水,纯牛奶只有原来的杯。

  生3:又喝了加满水后的,也就是把杯纯牛奶再平均分成2份,喝的纯牛奶就是其中的1份。

  师:把平均分成2份,可以把化成,其中的1份就是。第二次喝的纯牛奶是杯,水是杯。

  (3)解决问题。

  师:知道了乐乐第二次喝了多少杯纯牛奶,那么两次一共喝了多少杯纯牛奶?(指名回答,教师板书)

  第一次喝(杯)+第二次喝(杯)=两次一共喝(杯)

  杯+杯=?

  杯+杯=杯

  师:乐乐一共喝了多少杯水?

  生:乐乐第二次喝的纯牛奶是杯,水也是-=(杯)。

  3、回顾反思,明确解题方法。

  师:解决这道题的关键是什么?关键步骤应用了什么知识?

  生:关键是求出乐乐第二次喝了多少杯纯牛奶;关键步骤应用了分数的基本性质。

  设计意图:精心设计问题,由浅入深,引导学生层层剖析,自主找到解决问题的关键,给学生足够的合作交流的时间和空间,让学生充分经历探究的过程,使学生真正成为学习的主人,通过引导学生画图,直观地理解和呈现解决问题的方法。

  ⊙巩固练习,拓展提高

  1、东东有一瓶水,上午喝了一半,加满了水,下午又喝了一半。东东一共喝了多少瓶水?

  2、小明的半瓶墨水用了一半,还剩多少?

  ⊙课堂总结

  通过这节课的学习,你有什么收获?

  ⊙布置作业

  教材100页3、4题。

  板书设计

  解决问题

  第一次喝(杯)+第二次喝(杯)=两次一共喝(杯)

  杯+杯=?

  杯+杯=杯。

五年级教案《解决问题》8

  教学内容

  教科书第104页例1。

  教学目标

  1.能在具体的情境中找出等量关系。

  2.初步掌握列方程解决问题的基本方法。

  3.会根据等量关系列出方程解决比较简单的实际问题。

  4.体验方程在解决实际问题中的作用。

  教学重点

  列方程解决问题的基本方法。

  教学难点

  找出情境中的等量关系。

  教学过程

  一、复习导入

  课件出示教科书第104页的主题图。

  师:刘叔叔去加油站加汽油,工作人员给他加了一些后,可刘叔叔说还不够,你能根据他们的对话求出工作人员第二次加了多少升汽油吗?

  生:能!

  师:请在本子上试一试。

  指名回答,根据学生的回答板书:

  50-28=22(升)。

  师:有和他不一样的方法吗?

  师:今天我们就要研究这类问题的另一种解决方法:列方程解决问题。

  (板书:列方程解决问题)

  二、走进新课

  1.图示信息,寻找等量关系

  师:从刘叔叔和工作人员的对话中可以知道:加了几次油?一共加了多少升?

  生:加了两次,一共加了50L油。

  师:请同学们用线段图表示出图上的数学信息。学生独立画线段图。

  师:谁来展示?

  指名在黑板上画出线段图:

  师:从图上你能发现哪些等量关系?

  学生自由讨论,教师巡视指导。

  指名汇报,教师板书:

  第1次加的油量+第2次加的油量=总的加油量

  总的加油量-第2次加的油量=第1次加的油量

  总的加油量-第1次加的油量=第2次加的油量

  2.列出方程,解决问题

  师:同学们真能干!找到了3个等量关系。能根据第一个等量关系列出方程吗?试一试,写完

后和同桌说说你的想法。学生独立完成,教师巡视。根据巡视到的情况有针对性地指名板演。

  生1:28+x=50。

  生2:28+a=50。

  生3:28+b=50。

  师:这些方程都是根据同一个等量关系列出,它们有什么不同的地方?

  生:表示第2次加油量的字母不同。

  师:你们观察得真仔细!第二次加的油量没有告诉我们,可以用不同的字母来表示。因此我们在列方程前必须要先告诉别人你是用哪一个字母来表示这个未知数。格式可以这样写:(教师边讲解边板书)

  解:设第二次加了xL。

  列方程:28+x=50

  x=22

  答:第2次加了22L。

  师:这道题做正确了吗?我们来验算一下:

  28+22=50。

  师:通过验算,我们发现第一次加的28L油加上第二次加的22L油和总的加油量50L相等,符合题意,说明我们的计算正确,可以写上答语了。

  板书:

  答:第2次加了22L。

  师:用方程解决问题,也要验算答案对不对。验算时,应先检查方程是否符合题意,然后再检查"方程的解"是不是正确。

  3.讨论交流,步骤

  师:刚才我们列方程解决了一个数学问题。想一想,用方程解决问题的方法是什么?

  先独立思考,再在小组内交流。

  分组汇报,根据学生的汇报板书:列方程解决问题的一般步骤:

  (1)弄清题意。

  (2)寻找等量关系。

  (3)设未知数。

  (4)列方程。

  (5)解方程。

  (6)检验并写答语。

  三、尝试解决问题

  师:同学们,祝贺你们!你们通过自己的努力,又学到了一种解决问题的方法,想试一试吗?现在请同学们按照列方程解决问题的.一般步骤列出不同的方程解决"第二次加了多少升汽油"这个问题。

  学生试做后,指名汇报,板书:

  解:设第二次加了xL。

  列方程:50-x=28

  x=22

  答:第2次加了22L油。

  解:设第二次加了xL。

  列方程:50-28=x

  x=22

  答:第2次加了22升油。

  让不同列法的学生说说自己是根据哪个等量关系列出的方程。

  师:我们列出不同的方程解决了"第二次加了多少升汽油"这个问题,请同学们比较一下这三个方程,你发现了什么?

  生:第一个方程好一些,因为这个方程的等量关系更容易找。

  生:第三个可以不用方程计算,直接用50-28就算出了第二次加的油量。

  师:同学们说得不错!第三个方程的未知数没有参与计算,所以我们一般不列这样的方程解决问题。

  四、全课

  今天,我们一起学习了解决问题的另一种方法,大家一起来说说,这节课你有什么收获?

五年级教案《解决问题》9

  教学目标:

  1、进一步感受要根据实际需要求取商的近似值。

  2、进一步培养学生的`应用意识。

  教学过程:

  一、基础训练

  完成P35第8题

  学生独立完成后交流分析过程,并讨论结果的处理?(为什么这样处理?)

  二、巩固练习,判断这几题如何处理结果?

  1、有110米的布,做儿童套装,每套用布2.3米,能做多少套?

  2、有110吨的煤,用载重2.3吨的小车运,需运多少车?

  3、P345如何处理结果?组织学生讨论,鼓励他们说出理由,在交流中,自己发现不足校正。

  4、P359(先说出解题思路,再解答)同上

  5、P3510学生独立解答,全班交流不同方法

  6、,请学生说说感受。

  三、拓展练习

  教师可请学生编题,交换练习本解答。

  课后小记:v

五年级教案《解决问题》10

  教学目标

  1.通过创设问题情景,使学生在解决简单的实际问题的过程中,学会用“倒过来推想”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。

  2.通过动手实践、自主探索、合作交流等学习活动,使学生在不断反思的过程中,进一步发展分析、综合和简单推理的能力。

  3.通过对实际问题的探索,使学生进一步积累解决问题的经验,感受“倒过来推想”的策略对于解决特定问题的价值,获得解决问题的成功体验。

  重点难点

  重点是:体会适合用“倒过来推想”的策略来解决的问题的特点,学会用“倒过来推想”的策略解决问题的思考方法,能正确合理地运用倒推法进行问题解决实际生活问题。

  难点是:根据具体的问题确定合理的解题步骤,从而有效地解决问题。

  教学准备

  实验用具(水杯),作业本,多媒体课件

  教 学过程

  教学环节

  过程目标

  教 师活动

  学 生活动

  教 学反思

  创设

  情境

  体会

  倒过

  来想

  通过创设情境使学生从简单的事情中理解倒过来思路.

  1.创设学生春游乘车情境

  出示从苏州去南京沿途经的城市,提问回苏州时沿途依次经过哪些城市

  明确日常生活中常常应用到“倒过来想”的策略。

  师生交流

  观察

  独立思考

  自主

  探索

  学会

  新策

  略

  借助学生感兴趣的实验操作和熟悉的收作业本情境来代替教材例2,使学生在亲历过的问题中受到启发,自主探索用画直观图的方法、引导学生有序思考,用“倒过来推想”的策略解决问题,在解决问题过程中体会适用新策略解决的问题特点。

  一.初步理解“倒过来推想”的方法

  1、出示两只盛有不等果汁的杯子,信息:两杯共装果汁400毫升,提出问题:怎样才能使两只杯中的果汁同样多?

  2、配合演示从甲杯倒入乙杯40毫升使两杯同样多。然后组织学生猜一猜原来两杯果汁各有多少毫升?

  3、引导学生有序思考:倒水前后两只杯子里果汁的总量有没有变化?

  4、组织学生说说解决这个问题的主要策略是怎么样的?从而揭示“倒过来推想”的.策略。

  5、板书课题。

  二.体会适用新策略解决的问题特点

  1、创设学生交作业情境,出示一叠作业本,有关信息:如果又新收到12本,发下去25本,剩下总数是20本。

  2、呈现箭头图,帮助学生理顺数量变化方向。

  3、提问:你准备用什么策略来解决这个问题?呈现学生的列式计算方法。

  4、联系倒推的两步过程启发学生思考总体变化来思考。

  5、引导学生检验,用顺推的方法看剩下的是否为20本,使学生体会到用“倒过来推想”的策略解决问题是一种有效的方法和策略。

  观察思考

  学生交流

  说说自己的想法。

  尝试用画直观图和填表格的方法来更清楚展示数量关系的变化情况

  推理解答,说说倒推计算思路

  估测一下本数

  尝试用自己方法信息,并展示出来。

  说说“倒过来推想”策略

  思考“发下去25本”倒过来想要怎样?“新收到12本”倒过来想要怎样?

  列式

  顺推检验

  生活中有许多可以应用倒过去推想思路的实际问题,要引导学生从实际情况中去理解倒过去推想的思路.

  实践

  应用

  体会

  价值

  通过对实际问题的探索,使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。帮助学生进一步掌握本课知识,形成技能,并调动他们的学习乐趣

  1、组织完成练习十六的第1题

  组织学生和同桌交流自己的表达方式和思路

  投影学生作业过程,请学生介绍自己的方法。

  2、组织完成练习十六的第2题

  组织学生组内交流自己的表达方式和思路

  投影学生作业

  3、组织完成独立完成练一练。

  提问学生思考怎么理解小军拿出画片的一半还多一张送给小明?如果你是小军你会怎么做?

  出示10支粉笔,提问拿出粉笔的一半还多一支可以怎么拿?以此帮助学生理解关键句含义,明确可以分成两步理解

  独立完成

  仿照例1用列表方法

  独立完成

  仿照例2用箭头表达数量变化方向

  介绍自己的方法。

  理解先拿出一半,然后再拿一支。

五年级教案《解决问题》11

  第一课时

  教学内容:教科书第88~89页,例1、例2、练一练,练习十六第1~2题。

  教学目标:1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推向”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学过程:

  一、教学新课

  1、教学例1。

  (1)出示例1。如果把甲杯中的40毫升果汁倒入乙杯,这两杯果汁的数量分别会发生怎样的变化?进行操作演示。回顾操作过程,出示完整示意图。

  (2)解决实际问题。把甲杯中的40毫升果汁倒入乙杯后,两个杯子的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?知道了现在每个杯子中的果汁数量,可以怎样求原来两个杯子中的果汁数量?可以用怎样的方法来解决?小组讨论。

  (3)汇报方法。如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)。看来“再倒回去”是个好办法,用这个方法我们很容易就能想到原来两个杯子里各有多少毫升果汁。回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程把课本上的表格填写完整吗?边填边说每个数据各是怎样推算出来的。在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么优点?板书课题:解决问题的策略。

  2、教学例2。

  (1)理解题意,提出问题。用什么方法可以将题目的意思更清楚的表达出来?

  (2)解决问题。

  指出:可以按题意摘录条件进行。出示示意图。你能根据示意图说说题目的大意吗?你准备用什么策略来解决?你能仿照示意图的样四,表示出“倒过来推想”的过程吗?尝试画倒推的示意图。展示作业。根据示意图写出倒推后每一步的结果。你能列式解答吗?说说自己的想法。怎样才能知道我们推算出的结果是否正确呢?怎样验算?

  (3)归纳。

  解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  3、完成练一练。

  理解题意。尝试将题目中的条件,展示学生作业。你是怎样想的?你打算用什么样的策略角度解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种手法表示这样的意思吗?回列式解答吗?说说推想的过程。

  二、巩固练习

  1、完成练习十六第1题。

  你能通过列表的方法题目中的信息吗?你会列式解答吗?说说你是怎么想的?

  2、完成第2题。

  你能画图题目中各个条件的示意图吗?学生根据示意图列式解答。交流汇报,说说是怎样想的?

  三、课堂

  这节课你学会了什么?你有哪些收获和体会?

  第二课时

  教学内容:教科书第90~91页,练习十六第3~8题。

  教学目标:1、通过练习,使学生进一步掌握用“倒过来推想”的策略解决问题的思路,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、引入上节课

  我们学习了什么内容?在解决问题时,可以应

  用什么策略?板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第3题。

  你能把题中的条件进行吗?可以运用什么策略解决呢?你能在图中标出其他几个景点和大门的位置吗?展示作业,说说自己的思路。

  2、完成第4题。学生独立完成。汇报交流方法,你是怎样解决的?应该怎样倒过来想呢?

  3、完成第5题。学生独立完成。汇报交流方法,说说你是怎么想的?怎样检验所填的数据是否正确?

  4、完成第6题。读题,理解题意。下午6时的气温是18℃,根据比中午下降了7℃,你能推算出中午12时的气温吗?你是怎样推算上午8时是多少℃的?

  5、完成第7题。理解每幅图中显示的相等关系:5个桃子的重量=2个梨子的重量3个梨子的重量=1个菠萝的重量1个菠萝重600克小组中交流思路。说说是怎样想的?

  6、完成第8题。你能根据题中的`条件进行吗?根据的条件列式解答。应该怎样倒过来推想呢?

  三、课堂

  通过今天的练习,你有什么收获?在生活中,在解决很多实际问题时,都可以运用“倒过来推想”的策略解决。

  第三课时

  教学内容:教科书第92页,练习十六第9、10题、思考题。

  教学目标:1、使学生进一步掌握“倒过来推想”的策略解决实际问题,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、揭示课题板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第9题。

  理解对帐单每一栏的含义。4月份的结单余额和上月比,是多了还是少了?你是怎么知道的?怎样可以算出张阿姨信用卡3月份的结单余额是多少元?小组讨论方法。汇报交流想法。

  2、完成练习十六第10题。

  要知道这四张牌原来是怎么放的,可以运用什么样的策略?(逆推法)根据第四幅图,你能知道第三幅图中的牌是什么顺序吗?(10、9、7、8)原来的牌是什么顺序呢?(7、9、10、8)分组活动:拿出四张牌,任意交换两次位置,再翻开看结果,猜猜原来四张牌是怎样放的。小组活动。

  3、完成思考题。

  理解题意及关键词的意思。“遇店加1倍”,遇到店将加成壶中酒的2倍。你能根据题意画出示意图吗?原有?斗→加1倍→喝1斗→加1倍→喝1斗→加1倍→喝1斗(喝完)逆推为:0→1斗→0.5斗→1.5斗→0.75斗→1.75斗→1.75斗→0.875斗

  三、课堂

  你觉得“逆推法”对于解决生活中的实际问题有什么作用?

五年级教案《解决问题》12

  教学内容:教科书第63~64页的例1、例2和随后的“练一练”,练习十一的第1~3题。

  教学目标:

  1、使学生经历用列举策略解决简单实际问题的过程,能通过不重复、不遗漏的列举找到符合要求的答案。

  2、使学生对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学习数学的信心。

  教学过程:

  一、导入:

  1、导入语:今天老师要带大家去参观生态园(出示图片),看,多漂亮啊!

  二、教学例1,感知一一列举

  1、出示例1

  园长叔叔想找我们同学帮一个忙,你们愿意吗?

  (出示图片)用18根1米长的栅栏围成一个长方形羊圈。

  师:你想可以怎样围?

  要求:独立思考,已经想好的可以和同桌轻声交流(教师参与讨论)

  还有这么多举手的同学,说明同学们还有不同的围法,那么这个长方形羊圈有多少种不同的围法呢?这就是我们今天要解决的问题(板书:解决问题)

  2、布置任务,小组合作

  提问:请你仔细想你想,把所有不同的围法都找出来,并且纪录在表格内,如果有困难,可以用18跟小棒摆一摆,填好后在小组中交流。

  长方形的长/米

  长方形的宽/米

  全班交流:说说你是怎样找的,有哪几种围法?(实物投影展示学生不同的`写法)

  比较:有序和无序的两种,你更喜欢哪一种?为什么?

  3、 揭示课题

  师:同学们,通过大家的努力,我们解决了园长叔叔的难题,回顾一下,我们怎样找出4中不同围法的呢?(表格—一个一个写下来)

  指出:在我们解决一些实际问题的时候,可以像刚才这样把事情发生的可能按照一定的顺序,有条理的一个一个列举出来,从而找到问题的答案,这就是我们今天研究的解决问题的一个重要策略——一一列举。(板书:策略、一一列举)

  4、 园长叔叔的羊圈问题我们已经找到了4种不同的围法,你能算一算各种围法的面积吗?

  ① 指名口答

  ② 比较一下它们的长、宽、和面积,你有什么发现?

  指出:周长相等的长方形,面积不一定相等

  周长一定时,长与宽的数值越接近,面积就越大。

  师:如果你是园长,你会采用哪种围法?

  三、教学例2

  1、出示例2

  图书角有3本书,最少借1本,最多借3本。一共有多少种不同的借阅方法?

  ① 你是怎么理解最少借1本,最多借3本的?

  ② 引导学生说出可以借1本 (师板书)

  借2本

  借3本

  ③ 师:一共有多少种不同的借法呢?你准备怎样找出不同的借法?(列表,一个一个写下来,一一列举)

  2、布置任务,小组交流

  用你喜欢的表示方法有序地分析一共有多少种不同的借法。

  先独立思考,把你的想法或者表格写在自备本上,再在小组里交流(请各个组长组织安排好交流的顺序)

  全班交流

  (把不同的表示方法分别展示在实物投影上,并说说你是怎样想的)

  提问:如果只订阅1本,有几种不同的方法?具体说一说。

  如果订阅2本,有几种不同的方法?你是怎样想的?

  如果订阅3本呢?

  那么一共有多少种不同的方法?(分别板书)

  2、那么为了不遗漏、不重复,解决这个问题我们也可以利用这样的表格一一列举。

  ① 出示表格

  ① 出示表格

  只订1本 订2本 订本

  《科学世界》

  《七彩文学》

  《数学乐园》

  ② 指导生用划√的方法表示订阅的种类

  先指导只订1本的

  再指导订2本的(让生自己先分析怎么划√,再让生形成共识,划两个√代表一种订法)

  最后指导订3本的

  ③ 看表格找出共有几种不同的订法(竖行数出)

  4、:刚才用了一一列举的策略解决了这个问题,想一想要想得到全部答案,列举时要注意什么?(既不重复,也不遗漏)

  四、巩固新知

  生活中有很多类似的问题,我们也能够用一一列举来解决。

  1、P64练一练:

  一张靶纸共3环,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?(列举出所有可能的答案)

  你打算用什么策略解决这个问题?你会列举吗?

  试一试(注意有序性)

  2、练习十一第一题:

  课件显示问题:

  先分析题意(红色标出部分表示什么)

  生完成表格(完成在书上P66)

  用你喜欢的方法,标记出几时几分第二次同时发车。(并和同桌轻声交流)

五年级教案《解决问题》13

  教学目标:

  1、结合具体情境用分步算式和综合算式解决含有两步计算实际问题的过程,学会检验解答的正确性。

  2、初步培养在实际生活中分析问题和解决问题的能力。

  教学重点:

  1、掌握含有两步计算的实际问题的'方法。

  2、用综合算式解决问题。

  教学过程:

  一、 复习

  读题、分析、列式。

  1、小兔采了20个蘑菇,送给小猴8个,小兔又采了10个蘑菇,小兔现在有多少个蘑菇?

  2、小明剪了37颗星星,小红剪了45颗星,他们送给幼儿园50颗星,现在还剩多少颗星?

  二、新课

  出示例4

  问:指名学生看图说题意。

  问:你知道了什么?怎样解答?

  (3) 没烤的面包有多少个?90-36=54(个)

  (4) 还要烤几次?54÷9=6(次)

  问:你会列综合算式吗?

  (90-36)÷9=6(次)

  问:解答正确吗?指名学生检验是否正确。

  归纳:如果一个问题需要多个步骤才能解决,要想好先解答什么,解答什么

  二、做一做

  1、让学生说一说题意,再说说怎样解答,让学生独立解答,订正时说说你是怎样解答的,分步是怎样解答,综合算式是怎样解答的。

  2、了8行树苗,每行7棵,其中女生栽了28棵,男生栽了多少棵?

  3、动物园有10只黑鸽子,22只白鸽子,每个笼子里住4只,一共需要多少个笼子?

  独立完成,订正时说一说解题过程。

  板书设计:

  解决问题

  (1) 没烤的面包有多少个?90-36=54(个)

  (2) 还要烤几次?54÷9=6(次)

  综合算式:(90-36)÷9=6(次)

五年级教案《解决问题》14

  教学内容:

  教材第61页的例5、例6,及相应的“做一做”。

  教学目标:

  1、掌握用比例知识解答含有比例关系问题的步骤和方法。

  2、熟练地判断两种相关联的量是否成正、反比例,加深对正、反比例意义的理解。

  教学重点:

  能正确地运用比例知识解决问题。

  教学难点:

  正确判断比例数量之间的关系,并能根据正、反比例的意义列出方程。

  教学过程:

  一、复习导入

  1、判断下列每题中的两个量是不是成比例,成什么比例关系?

  (1)购买课本的单价一定,总价与数量。

  (2)差一定,减数与被减数。

  (3)总路程一定,速度与时间。

  (4)零件总数一定,生产的天数与每天生产的件数。

  2、如果用字母x和y表示两种相关联的量,用k表示定量,正比例和反比例关系可以用哪个式子来表示?(板书:正比例: =k(一定) 反比例:xy=k(一定))

  3、导入新课:今天我们就一起来研究用比例解决问题。

  二、自学互动,适时点拨

  【活动一】正比例的应用

  学习方式:小组合作、汇报交流

  学习任务

  1、出示例5主题图,阅读与理解。

  (1)阅读题目。

  (2)理解题意:已知条件是什么?所求的问题是什么?

  2、分析与解答。

  (1)提问:观察题目中的已知条件和所求的问题,大家认为这道题我们可以怎么进行思考呢?

  (2)小组交流

  ①要解决水费的问题,就要知道水价和用水量。

  ②水价虽然不知道,但它是一定的'。

  ③可以先算出每吨水的价钱,再算出10吨水的价钱;也可以用比例的方法解决。

  (3)用算术方法解答: 28÷8×10

  (4)交流用比例知识解决问题的方法。

  ①问题中有哪两种量?它们对应的数据分别是什么?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  (5)学生独立解答,组织交流。

  解:设李奶奶家上个月的水费是x元。

  28/8=x/10

  8x=28×10

  8x=280

  x=280÷8

  x=35

  3、回顾与反思。

  (1)28:8和x:10分别表示什么?(水费单价)

  (2)如果列出的比例是8:28和10:x可以吗?为什么?(可以,因为8:28和10:x都表示1元可以用水多少吨,是一定的。)

  (3)你有什么方法检验自己的解答是正确的呢?

  4、即时练习:王大爷家上个月的水费是42元,上个月用了多少吨水?

  【活动二】反比例的应用

  学习方式:小组合作、汇报交流

  学习任务

  1、出示例6,阅读与理解。

  (1)题目中已知条件和所求的问题分别是什么?

  (2)题目中哪个量是一定的?(总用电量)

  2、分析与解答。

  (1)题目中的两种变化的量能组成什么比例?为什么?(因为“每天用电量×天数=总用电量”,所以每天用电量和天数成反比例关系。)

  (2)学生独立用比例知识解答,组织交流

  解:设原来5天的用电量现在可以用x天。

  25x=100×5

  25x=500

  x=500÷25

  x=20

  3、回顾与反思:解决这类问题的关键是什么?(找出哪两个量的乘积一定,只要两个量的乘积一定,就可以用比例关系解答。)

  4、即时练习:现在30天的用电量原来只够用多少天?

  三、达标测评

  1、课本第62页“做一做”第1、2题。

  先用比例知识解答,再说一说两道题数量关系有什么不同,是怎样列式解答的。

  四、课堂小结

  通过这节课的学习,你有什么收获?

五年级教案《解决问题》15

  教学内容:教科书第88~89页的例1、例2和“练一练”,练习十六的第1、2题

  教学目标:

  1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

  教学过程:

  一、学习例1

  1.呈现问题。

  (1)出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

  提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

  (2)学生回答上述问题后进行实际的`操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

  (3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

  2.解决问题。

  (1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

  (2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

  (3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)学生画图后,组织展示、交流,并相机呈现教材的第二组示意图。

  3.填表回顾,加深对“倒过来推想”的体验。

  (I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的每个数据各是怎样推算出来的。

  (2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

  二、学习例2

  1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

  2.在学生讨论后,指出:可以按题意摘录条件进行。出示下图:

  原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

  提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

  3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

  学生尝试画出倒推的示意图后,出示下图:

  原有?张←一一去掉24张←一一跟小军要回30张←一一还剩52张

  4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

  5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  三、应用巩固

  出示“练一练”,学生各自读题。

  四、课堂作业

  做练习十六的第1、2题。

【五年级教案《解决问题》】相关文章:

解决问题教案11-06

《解决问题》教案07-21

除法解决问题教案02-26

解决问题的策略教案03-02

《解决问题》教案(15篇)03-03

《解决问题》教案15篇02-11

用方程解决问题教案03-07

解决问题的策略教案15篇03-03

百分数解决问题的教案03-02