范文资料网>反思报告>教案大全>《《抽屉原理》教案

《抽屉原理》教案

时间:2022-07-28 19:14:30 教案大全 我要投稿
  • 相关推荐

《抽屉原理》教案

  作为一名优秀的教育工作者,常常需要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。那么你有了解过教案吗?下面是小编整理的《抽屉原理》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《抽屉原理》教案

《抽屉原理》教案1

  教学目标:

  1.通过练习让学生理解抽屉原理,学会简单的原理分析方法。

  2.在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  教学重点:

  理解抽屉原理,掌握先平均分,再调整的方法。

  教学难点:

  理解总有至少的意义,理解至少数=商数+1。

  教学过程:

  一、教师出示练习题,学生完成

  二、学生完成后,集体订正。

  1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

  2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有相同的点数?

  3.有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同

  4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜。试证明:一定有两个运动员积分相同。

  5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

  6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人?

  7.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的.手套中一定有两双是同颜色的。

  8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?

  9.从1,3,5,,99中,至少选出多少个数,其中必有两个数的和是100。

  10.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。

  11.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有多少人得分相同?

  12.20xx名营员去游览长城,颐和园,天坛。规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?

  13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有多少人植树的株数相同?

《抽屉原理》教案2

  【知识技能】

  1.理解最简单的抽屉原理及抽屉原理的一般形式。

  2.引导学生采用操作的方法进行枚举及假设法探究。

  【过程方法】

  经历抽屉原理的探究过程,初步了解抽屉原理。

  【情感态度价值观】

  体会数学知识在日常生活中的广泛应用,培养学生的`探究意识和能力。

  【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  【教学过程】

  一、问题引入。

  师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

  1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

  2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

  游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

  引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

  二、探究新知

  (一)教学例1

  1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?

  师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

  板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

  问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?

  引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

  问题:

  (1)“总有”是什么意思?(一定有)

  (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)

  教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?

  学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

  问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

《抽屉原理》教案3

  说课稿

  一、说教材

  1、教学内容:我说课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2.

  2、教材地位及作用及学情分析

  本单元用直观的方法,介绍了“抽屉原理”的两种形式,并安排了很多具体问题和变式,帮助学生通过“说理”的方式来理解“抽屉原理”,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

  教材中,有三处孩子们不好理解的地方:1)“总有一个”、“至少”这两个关键词的解读;2)为了达到“至少”而进行“平均分”的思路,3)把什么看做物体,把什么看做抽屉,这样一个数学模型的建立。六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。于是我安排通过例1的直观操作教学,及例2的适当抽象建模,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法。

  3、本节课的教学目标

  根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

  知识性目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

  能力性目标:经历抽屉原理的探究过程,通过实践操作,发现、归纳、总结原理。

  情感性目标:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学的魅力。

  4、教学重、难点的确定

  教学重点:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

  教学难点:理解抽屉原理中“至少”的含义,并会用抽屉原理解决实际问题。

  二、说教法、学法

  六年级学生既好动又内敛,于是教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。学法上主要采用了自主合作、探究交流的学习方式。体现数学知识的形成过程,感受数学学习的乐趣。

  三、说教学过程:

  一、游戏激趣,初步体验。

  师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了2把椅子,请3个同学上来,谁愿来?

  1.游戏要求:你们3位同学围着椅子走动,等音乐定下来后请你们3个都坐在椅子上,每个人必须都坐下。

  2.师:老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果不相信咱们再做一次,好不好?

  引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。【设计意图:第一次与学生接触,在课前进行的游戏激趣,一使教师和学生进行自然的沟通交流;二激发学生的兴趣,引起探究的愿望;三为今天的探究埋下伏笔。】

  二、操作探究,发现规律。

  1、提出问题:把4支铅笔放进3个文具盒中,不管怎么放,总有一个文具盒至少放进 支铅笔。让学生猜测“至少会是”几支?

  2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。

  (1)先请列举所有情况的学生进行汇报,一说明列举的不同情况,二结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)

  学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支铅笔被放进了同一个文具盒。

  【设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2支铅笔”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理解“总有一个文具盒”以及“至少2支”。让学生初步经历“数学证明”的过程,训练学生的.逻辑思维能力。】

  (2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?

  学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。

  在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。只有平均分才能将铅笔尽可能的分散,保证“至少”的情况。

  【设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。】

  (3)初步观察规律。

  教师继续提问:6支铅笔放进5个文具盒里呢?你还用一一列举所有的摆法吗?7支铅笔放进6个文具盒里呢?100支铅笔放进99个文具盒呢?你发现了什么?

  【设计意图:让学生在这个连续的过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维。】

  3、运用抽屉原理解决问题。

  出示第70页做一做,让学生运用简单的抽屉原理解决问题。在说理的过程中重点关注“余下的2只鸽子”如何分配?

  【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】

  4、发现规律,初步建模。

  我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)

  小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。现在你能解释为什么老师肯定前两排的同学中至少有2人的生日是同一个月份吗?

  【设计意图:通过对不同具体情况的判断,初步建立“物体”“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。】

  5、用有余数的除法算式表示假设法的思维过程。

  (1)教学例2,可以出示问题后,让学生说理,然后问:这个思考过程可以用算式表示出来吗?

  (2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。为什么?

  【设计意图:在例1和做一做的基础上,相信学生会用平均分的方法解决“至少”的问题,将证明过程用有余数的除法算式表示,为下一步,学生发现结论与商和余数的关系做好铺垫。】

  三、巩固练习。

  扑克牌游戏

  ①师与生配合做

  教师洗牌学生抽其中的任意5张,教师猜其中至少有2张是同花色的。

  ②学生做游戏

  要求探寻规律并说明理由。

  【设计意图:用游戏的形式激发学生的兴趣,用抽屉原理解决具体问题进行建模,让学生体会抽屉的形式是多种多样的。】

  四、小结全课,激发热情

  1、今天的你有什么收获?

  我们将铅笔、鸽子、扑克看做物体数,文具盒、鸽舍、四种花色看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)

  小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。

  2、介绍课外知识。

  介绍抽屉原理的发现者——数学家狄里克雷。

  【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。】

《抽屉原理》教案4

  【教学内容】

  《义务教育课程标准实验教科书·数学》六年级下册第68页。

  【教学目标】

  1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

  3.通过“抽屉原理”的灵活应用感受数学的魅力。

  【教学重点】

  经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

  【教学难点】

  理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

  【教具、学具准备】

  每组都有相应数量的盒子、铅笔、书。

  【教学过程】

  一、课前游戏引入。

  师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

  师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

  师:开始。

  师:都坐下了吗?

  生:坐下了。

  师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?

  生:对!

  师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?

  点评:教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

  二、通过操作,探究新知

  (一)教学例1

  1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的`放法?

  师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)

  点评:此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

  师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

  生:不管怎么放,总有一个盒子里至少有2枝笔?

  是:是这样吗?谁还有这样的发现,再说一说。

  师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

  师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

  (4,0,0)

  (3,1,0)

  (2,2,0)

  (2,1,1),

  师:还有不同的放法吗?

  生:没有了。

  师:你能发现什么?

  生:不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:“总有”是什么意思?

  生:一定有

  师:“至少”有2枝什么意思?

  生:不少于两只,可能是2枝,也可能是多于2枝?

  师:就是不能少于2枝。(通过操作让学生充分体验感受)

  师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

  学生思考——组内交流——汇报

  师:哪一组同学能把你们的想法汇报一下?

  组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

  师:你能结合操作给大家演示一遍吗?(学生操作演示)

  师:同学们自己说说看,同位之间边演示边说一说好吗?

  师:这种分法,实际就是先怎么分的?

  生众:平均分

  师:为什么要先平均分?(组织学生讨论)

  生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

  生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

  师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

  师:哪位同学能把你的想法汇报一下,

  生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:把6枝笔放进5个盒子里呢?还用摆吗?

  生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:把7枝笔放进6个盒子里呢?

  把8枝笔放进7个盒子里呢?

  把9枝笔放进8个盒子里呢?……

  师:你发现什么?

  生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

  点评:教师关注了“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。

【《抽屉原理》教案】相关文章:

《阿基米德原理》教案03-03

阿基米德原理教案02-22

保险学原理名词解释精选03-03

汽轮机原理名词解释整理03-21

初二物理阿基米德原理教学反思01-31

初二物理阿基米德原理教学反思3篇02-02

教案中班教案02-23

教案教案及反思04-18

小班教案安全教案03-16