解方程的教案

时间:2024-04-18 17:28:46 教案大全 我要投稿

解方程的教案

  作为一名教职工,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。快来参考教案是怎么写的吧!下面是小编整理的解方程的教案,欢迎大家分享。

解方程的教案

解方程的教案1

  学习目标

  1、 会设未知数,并利用问题中的相等关系 列方程,且正确求解

  2、 会用一元一次方程解决工程问题

  重点难点

  重点:建立一 元一次方程解决 实际问题

  难点:探究实际问题与一元一次方程的关系

  教学流程

  师生活动 时间

  复备标注

  一、 复习:

  解下列方程:

  1.9-3y=5y+5

  二、新授

  例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

  分析:这里可以把总工作量看做1。思考

  人均效率(一个人做1小时完成的工作量)为 。

  由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

  这项工作分两 段完成,两段完成的工作量之和为 。

  解:设先安排x人工作4小时。

  根据两段工作量之和应是总工作量,得?

  去分母, 得 4x+8(x+2)=-1701

  去括号,得 4x+8x+16=40

  移项及合并同类项,得

  12x=24

  系数化为1,得 x=-243.

  所以 -3x=729

  9x=-2187.

  答:这三个数是-243,729,-2187。

  师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

  例4 根据下面的两种移动电话计费方式表,考虑下列问题。

  方式一 方 式二

  月租费 30元/月 0

  本地通话费 0.30元/月 0.40元/分

  (1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

  (2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

  方式一 方式二

  200分 90元 80元

  350分 135元 140元

  ( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

  0.4t=30+0.3t

  移项,得 0. 4t -0.3t =30

  合并同类项,得 0.1t=30

  系数化为1,得 t=300

  由上可知,如果一个月内通话300分,那么两种计费方式相同。

  思考:你知道怎样选择计费方式更省钱吗?

  解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

  归纳:用一元一次方程分析和解决实际问题的基本过程如下

  三、巩固练习:94页9、10

  四、达标测试 :《名校》55页1.2.3.

  五、课堂小结:

  (1) 这节 课我有哪些收获?

  (2) 我应该注意什么问题?

  六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

  (1)每一步的依据分别是什么?

  (2)求方程的解就是把方程化成什么形式?

  先让学生读题分析规律,然后教师进行引导:

  允许学生在讨论后再回答。

  在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

  学生独立解方程方程的解是不是应用题的解

  教师强调解决 问题的分析思路

  学生读题,分析表格中的信息

  教 师根据学生的分析再做补充

  学生思考问题

  教师根据学生的解答,进行规范分析和解答

  有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

  例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?

  分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

  设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

  解:设有胶鞋x双,则有布鞋(46-x)双。

  7.5x-5.9(46-x)=10,

  7.5x-271.4+5.9x=10,

  13.4x=281.4,

  x=21。

  答:胶鞋有21双。

  分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以

  答:袋中共有74个球。

  在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。

  例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[

  分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  80x-40=(30x+40)×2,

  80x-40=60x+80,

  20x=120,

  x=6(座)。

  分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)×80=(2x+40)×30,

  80x-3200=60x+1200,

  20x=4400,

  x=220(米3)。

  由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

  同理,也可设有红砖x米3。留给同学们做练习。

  例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?

  分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程

  x-10=[(x-10)×2-9]×5,

  x-10=(2x-29)×5,

  x-10=10x-145,

  9x=135,

  x=15(个)。

  例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:

  还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?

  分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,

  0×7+1×5+2×4+6×(x-7-5-4)

  = 5+8+6×(x-16)

  = 6x-83,

  也等于进球数不到8个的人的`进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1,

  = 3×(x-8)+24+36+10

  = 3x+46。

  由此可得方程

  6x-83=3x+46,

  3x=129,

  x=43(人)。

  例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。

  分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程

  4÷(150-3x)=8÷(150-x),

  4×(150-x)=8×(150-3x),

  600-4x=1200-24x,

  20x=600,

  x=30(千克)。

  练习23

  还剩60元。问:甲、乙二人各有存款多少元?

  有多少溶液?

  3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?

  4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?

  5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?

  含金多少克?

  7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?

解方程的教案2

  教学目标:

  1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

  2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

  4、培养学生规范书写和自觉检验的好习惯。

  教学重点:

  1、 对等式的基本性质一的理解和运用。

  2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学难点:

  1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学过程:

  教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

  后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

  在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

  这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

  教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

  最后引出方程的.解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

  模式方法:观察――实验――讨论――交流――概括结论

  作业设计:自主练习1-3题。

  讨论要点

  1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

  2、 教学时,要关注学生的算术思维向方程思维的转变。

  3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

  4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

  活动总结

  本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

解方程的教案3

  一、设计理念:

  随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。

  二、教学目标:

  知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。

  过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。

  三、教学重、难点:

  教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。

  教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  四、教学方法:“勾漏”双向四步教学法;观察法、比较法、归纳法。

  五、教学准备:教学课件

  六、教学过程

  (一)、勾人入境:

  同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?

  (二)、漏知互学:

  我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程

  先来看第一大块的加法方程

  186+x=200

  用等式的性质这样解:

  186+x=200

  解:x+186—186=200—186

  X=14

  熟练后可以这样解:

  186+x=200

  解:x=200—186

  X=14

  有什么规律呢?先看符号(+——--符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?

  现在我们再看第二大块的乘法方程

  36×x=108

  用等式的性质这样解:

  36×x=108

  解:X×36÷36=108÷36

  X=3

  熟练后可以这样解:

  36×x=108

  解:X=108÷36

  X=3

  师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的.规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?

  现在我们再来看第三大块,减法方程:

  X—36=12

  用等式的性质这样解:

  X—36=12

  解:X—36+36=12+36

  X=48

  熟练后可以这样解:

  X—36=12

  解:X=12+36

  X=48

  那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:

  108—X=60

  用等式的性质可以这样解:

  108—X=60

  解:108—X+X=60+X

  108 =60+X

  60+X =108

  X+60-60 =108-60

  X=48

  熟练后可以这样解:

  108—X=60

  解:X=108—60

  X=48

  同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。

  接下来我们再来学习第四块,除法方程:

  X÷12=5

  用等式的性质可以这样解:

  X÷12=5

  解:X÷12×12=5×12

  X=60

  熟练后可以这样解:

  X÷12=5

  解:X=5×12

  X=60

  同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样,1、未知数X在除号前面,2、都用乘法,3、数字没有相反。怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。

  48÷X=3

  用等式的性质可以这样解:熟练后可以这样解:

  48÷X=3 48÷X=3

  解:48÷X×X=3×X解:X=48÷3

  48=3×X X=16

  3×X=48

  X=48÷3

  X=16

  仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数X在除号后面,2、都用除法,3、数字没有相反。以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。

  (三)、流程对测:

  小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。

  小组开始探究,教师巡逻指导

  (四)、结课拓展:请同学们说说这节课你学到了什么?

解方程的教案4

  教学内容:

  教科书58页例1。

  教学目标:

  1、结合图例,根据等式不变的性质,学会解简易方程。

  2、掌握解方程的书写格式,并能用代入法进行检验。

  3、提高学生的分析、理解能力,同时渗透函数的思想。

  教学重点:

  掌握解方程的方法和书写格式。

  教学重点:

  掌握解方程的方法。

  教具准备:

  可见、平台

  教学过程:

  一、复习。

  1、提问:什么是方程?

  2、判断下面各式哪些是方程?

  a+24=734 X =36+1723÷a>43X +843 X +4y=848÷a=9

  3、后面括号中哪个x的值是方程的解?

  (1)X +42=98 (X =57,X =135)

  (2)5.2- X =0.7 (X =4.5,X =8.8)

  4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)

  5、导入:今天,我们就利用等式的性质来解方程。

  板书课题:解方程

  二、新课学习。

  1、出示例1的图

  (1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?

  (盒子里有X个皮球和外面3个皮球等于9个皮球)

  (2)请学生根据关系列出式子。

  板书:X +3=9

  (3)问:怎样解这个方程呢?(出示课件)

  (4)师:我们可以用天平保持平衡的道理来帮助解方程。

  (5)看课件演示

  问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?

  (6)学生思考后回答。

  (7)演示课件

  教师一边演示一边在黑板写出:X +3-3=9-3

  (8)师生小结:方程两边同时减去同一个数(3)

  (9)问:为什么要减3,减2可以吗?学生回答

  (10)天平两边同时减去同一个数,天平两边还平衡吗?

  出示课件,学生回答:平衡

  师板书:左右两边仍然相等

  (11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)

  2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程

  的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的`解是否正确。)

  3、质疑:看书58页,还有什么不明白的地方?

  (通过练习测试学生的掌握程度)

  三、练习。

  1、出示课件:第59页做一做的第一题中的第一个图:列方程解答并验算

  (1)学生独立完成,师巡视。

  (2)指名学生板演,并说说如何解答的?

  2、加法会解了,那么减法又怎样做呢?我们来挑战一下。

  (1)课件出示:x-2=15 小组讨论完成

  (2)投影学生的计算结果,让学生说出解题思路。

  3、我最棒

  (1)我是小法官

  A:x+1.2=5.7 B:x-1.8=4 x+1.2-1.2=5.7-1.2 解:x-1.8+1.8=4+4 x=4.5 x=8

  4、找朋友

  8+ X =16 X =3

  X -6=17 X =9.6

  X +2.1=5.1 X =8

  X -3.2=6.4 X =23

  5、拓展

  X -0.5=3+1.9

  四、作业

  数学课本63页练习十一的第5题中的前四题。

解方程的教案5

  学习内容:人教版五年级上册p57-59页

  学习目标:

  1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。

  2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。

  3、在观察、猜想、验证等数学活动中,发展学生的数学素养。

  学习重点:用等式的的性质解方程,理解算理

  学习过程:

  一、创设情境,引出方程

  1、研究例1:

  猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?

  x

  导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)

  设问:能用一个方程来表示吗?板书x+2=6

  二、探究算理

  设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?

  预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4

  研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?

  学生上台用天平演示

  请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2

  追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?

  尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)

  讲解解方程的书写格式(与天平相对应)

  小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。

  尝试:解方程:x-1=3,想一想:如果要用天平的乒乓球,如何来表示出这个方程?

  指名摆一摆,学生尝试解决,并用操作来验证

  2、研究例2:3x=18

  学生尝试后出示:3x÷3=12÷3

  用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。

  展示,课件演示后小结:方程的左右二边可以同时除以相同的.数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数

  总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……

  三、巩固练习:

  1、p59页1

  2、后面括号中哪个是x的值是方程的解?

  (1)x+32=76 (x=44, x=108)

  (2)12-x=4 (x=16, x=8)

  3、解方程

  p59页第2题的前面四题,要求口头验算

  四、总结:

解方程的教案6

  教学目标

  知识与技能

  1.初步理解方程的解和解方程的含义。

  2.结合图例,理解根据等式的性质解方程的方法并进行检验。

  3.掌握解方程的格式和写法。

  过程与方法

  经历方程的解和解方程的认识过程,提高学生比较、分析的能力。

  情感态度与价值观

  在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验的学习习惯。

  教学重难点

  重点:理解方程的解和解方程的含义。

  难点:会检验方程的解。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1、复习旧知,迁移导入

  (1)在上一节课的学习活动中,我们探究了哪些规律?

  学生回顾天平保持平衡的规律及等式保持不变的规律。

  (2)学习这些规律有什么用呢?今天我们解方程就需要充分利用等式的基本性质。

  【板书课题:解方程(1)】

  2、合作探究,获取新知

  8.2.1教学教材第67页例1。

  (1)课件出示例1。

  从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9

  学生自己先列出方程,然后指名回答。

  【板书:χ+3=9】

  如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

  (2)出示第67页分析图示,学生观察图示,交流想法。

  根据学生的汇报,板书解方程的过程:

  (3)为什么方程两边同时减去3,而不是别的数?

  引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。

  追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。

  (4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。

  【板书】:

  小结:通过刚才解方程的过程,我们知道了在方程的`左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。

  【注意】:在书写的过程中写的都是等式,而不是递等式。

  (5)认识、区别方程的解和解方程。

  ①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。

  【板书】:使方程左右两边相等的未知知数的值,叫做方程的解

  求方程的解的过程叫做解方程。

  ②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同?

  在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。

  ③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。

  8.2.2教学教材第68页例2。

  (1)利用等式不变的规律,我们再来解一个方程。

  出示例2:解方程3χ=18

  怎样才能求到1个χ是多少呢?

  观察示意图,互相讨论,指名回答。

  在方程两边同时除以3,得到χ=6。

  让学生打开书68页,把例2中的解题过程补充完整。

  为什么两边同时除以的是3,而不是其它数呢?

  两边同时除以3,刚好把左边变成1个χ。

  使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。

  (2)组织学生动手检验。

  (3)这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  8.2.3教学教材第68页例3。

  (1)出示:解方程20-χ=9

  (2)指名学生板演,解出方程20-χ=9的解。

  (3)交流归纳解方程的方法。

  (4)小结:等式两边加上相同的式子,左右两边仍然相等。

  3、深化理解,拓展应用

  (1)随堂练习。

  ①、完成“做一做”的第1、2题,集体评讲,强调验算。

  ②、思考:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?

  等式保持不变的规律。

  (2)拓展练习。

  亮亮今年9岁,爸爸今年37岁。几年后妈妈的年龄是小华的3倍?

  4、自主评价,全课总结

  你觉得自己今天学会了什么?还有什么不太理解的地方?

  讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

  课后习题

  练习十五1—5题。

  板书

  所以,χ=6是方程的解。

  使方程左右两边相等的未知数的值,叫方程的解。

  求方程的解的过程叫解方程。

解方程的教案7

  用含有两个相同字母的式子表示数量关系及解方程

  一、教学内容:

  课本105页-106页的内容及相应练习。

  二、教学目标:

  教养目标:使学生通过实例,根据运算的意义,掌握两个相同字母相加减的运算;学会解带有两个相同字母的方程,为用方程解应用题打下基础。

  教育目标:通过学习,从而拥有热爱科学,不畏困难、学好基础知识的精神。

  发展目标:学会在讨论和交流中探究掌握知识,学会初步的集合、对应等数学思想。

  三、教学重点、教学难点:

  重点:借助插图,从直观上理解ax±bx=(a±b)x的计算方法及方程的解法。

  难点:熟练计算ax±bx,尤其是当b=1时的计算方法。

  四、教学准备:

  多媒体课件

  五、教学过程:

  一、导入。

  情景:20xx年10月15,中国航天飞行第一人杨利伟带来了成功回归的信息,你的心情怎么样?你也想到太空去看看吗?今天我们就一起出发到太空遨游!

  1、出示:一个工地用汽车运土,每辆车运5吨,一天上午运4车,下午运3车,这一天共运土多少吨?

  分析题意,学生解答后出示两种解法:5×(4+3) 5×4+5×3

  2、导入新课。

  情景:飞船升空,布置任务1。

  出示学习目标1:学习用含有两个相同的字母的式子表示的数量关系及解简易方程。板书课题。

  二、探究新知:

  1、教学例5。

  出示例5改编题:本次任务需要用太空车运送外星泥土,每辆车运x吨,一天上午运4车,下午运3车,这一天共运土多少吨?

  (1)小组合作交流:(出示讨论提纲)

  A、每车运土x吨,怎样求上午运土多少吨?下午运土多少吨?

  B、怎样求运土的总吨数?还可以怎样求?

  课件出示:4x+3x (4+3)x

  个别提问:为什么可以列出(4+3)x?先求4+3,求出什么?

  (2)4x+3x和(4+3)x有什么关系?这实际应用了什么运算定律?4x表示几个x,3x表示几个x?(4+3)x实际就是几个x?所以这个式子的结果就是7x。

  (3)想一想,如果把问题改成上午比下午多运多少吨?应怎样列式?

  同位讨论:4x-3x的结果是多少,为什么?1x通常怎样表示?

  (4)师小结:当碰到有两个相同字母的式子,我们可以根据乘法分配律把公因数提取,并把不是公因数的数字相加减,从而算出结果。

  (5)完成105页做一做。

  3、教学例6。

  情景:出示任务2。出示例6。

  (1) 小组讨论:这是个含有两个相同字母的方程。第一步你你该怎样解答?

  (2) 你能把它转化为简单的方程吗?

  (3) 学生发表意见后板书解题过程,提醒学生注意格式,全班口头检验。

  (4) 完成106页做一做。

  (5) 小结:解带有两个相同字母的方程,我们可以根据乘法分配律,将相同因数提取,不同因数相加减,从而转化成最简单的方程解答。

  (6) 反馈练习:判断题:b+0.1b=0.1b吗?5x-x=5吗?

  三、巩固练习。

  情景:看到同伴被外星人抓去,你能闯三关把他们救出来吗?

  练习1:书本第107页第3题。

  练习2:书本第107页第4题。

  读题,分析题意:

  成人有多少人?(x人)儿童有多少个x个人?共80人是什么意思?

  练习3:书本第108页第6题(2)

  题目要求列方程解答,第一步要先怎样做?解设什么是x?

  四、小组竞赛。

  情景:你们所掌握的数学知识真让我佩服,欢迎地球的朋友们一起来探索宇宙的奥秘,宇宙中含有无数美丽的'恒星,如果谁最快能帮助我解决下面的题目,我就把其中的一颗星星送给你们,努力呀!

  1、小组合作完成书本108页第7题,先思考应怎样做?让最快想到方法的同学先讲讲解题方法。最快完成的同学切换成投影方式奖星星。

  2、小组合作完成108页第10题。把答案贴到展示板上,如时间不够可下课时让同学自己评评哪一组的方程列得快、列得好。能答对的小组老师也每人送他一颗星星。

  五、总结。

  1、这节课你有什么收获?你还想利用方程来解决什么问题呢?

  2、你为什么能看到这美好的太空画面,如果人类科技落后,能看到吗?你知道吗,数学中的方程是解决科学难题的基本工具,你想把这工具掌握在手里吗?希望同学们在五彩缤纷的未来中能亲眼看到真正的太空,到时候再给虞老师讲讲你的感受,可以吗?有信心吗?

解方程的教案8

  一、目的要求

  使学生会用移项解方程。

  二、内容分析

  从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

  x=a的形式有如下特点:

  (1)没有分母;

  (2)没有括号;

  (3)未知项在方程的一边,已知项在方程的另一边;

  (4)没有同类项;

  (5)未知数的系数是1。

  在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

  根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

  解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

  用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

  如解方程 7x-2=6x-4

  时,用移项可直接得到 7x-6x=4+2。

  而用等式性质1,一般要用两次:

  (1)两边都减去6x; (2)两边都加上2。

  因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程当中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

  三、教学过程

  复习提问:

  (1)叙述等式的性质。

  (2)什么叫做方程的解?什么叫做解方程?

  新课讲解:

  1.利用等式性质1可以解一些方程。例如,方程 x-7=5

  的两边都加上7,就可以得到 x=5+7,

  x=12。

  又如方程 7x=6x-4

  的两边都减去6x,就可以得到 7x-6x=-4,

  x=-4。

  然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

  2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

  也就是说,方程中的任何一项改变符号后可以从方程的'一边移到另一边。

  3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程。

  利用移项解前面提到的方程 3x-2=2x+l

  解:移项,得 3x-2x=1+2。①

  合并,得 x=3。

  检验:把x-3分别代入原方程的左边和右边,得

  左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,

  所以x=3是原方程的解。

  在上面解的过程当中,由原方程①的移项是指:

  (l)方程左边的-2,改变符号后,移到方程的右边;

  (2)方程右边的2x,改变符号后,移到方程的左边。

  在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

  课堂练习:教科书第73页 练习

  课堂小结:

  1.解方程需要把方程中的项从一边移到另一边,移项要变号。

  2.检验要把数分别代入原方程的左边和右边。

  四、课外作业

  习题2。1 P73 复习巩固

解方程的教案9

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话导入

  师:看下面的字母,你知道它们分别是什么意思吗?

  SOS EMS m2

  (SOS:求助信号;EMS:中国邮政快递;m2:平方米)

  字母在生活中随处可见,这说明它很重要。今天我们就来进一步巩固用字母表示数及解方程等知识。(板书课题:用字母表示数、解方程)

  ⊙回顾与整理

  1.用字母表示数。

  (1)用字母表示数的作用和意义。

  用字母可以简明地表示数、数量关系、运算定律和计算公式,为研究和解决问题带来了很多方便。

  (2)我们曾经学过哪些用字母表示数的知识?

  整理:

  ①用字母表示数的简写。

  ②用字母表示数量关系。

  ③用字母表示运算定律。

  ④用字母表示计算公式。

  (3)常见的用字母表示的数量关系有哪些?

  预设

  生1:路程用s表示,速度用v表示,时间用t表示,三者之间的关系如下:

  s=vt v= t=

  生2:总价用a表示,单价用b表示,数量用c表示,三者之间的关系如下:

  a=bc b= c=

  (4)常用的.运算定律有哪些?

  预设

  生1:加法交换律:a+b=b+a

  生2:加法结合律:(a+b)+c=a+(b+c)

  生3:乘法交换律:a×b=b×a

  生4:乘法结合律:a×b×c=a×(b×c)

  生5:乘法分配律:a×(b+c)=a×b+a×c

  (5)常见的用字母表示的计算公式有哪些?

  预设

  生1:长方形的长用a表示,宽用b表示,周长用C表示,面积用S表示。

  C=2(a+b) S=ab

  生2:正方形的边长用a表示,周长用C表示,面积用S表示。

  C=4a S=a2

  生3:平行四边形的底用a表示,高用h表示,面积用S表示。

  S=ah

  生4:三角形的底用a表示,高用h表示,面积用S表示。

  S=

解方程的教案10

  教学内容:

  数学书P58-P59及“做一做”,练习十一第5-7题。

  教学目标:

  1、 结合具体图例,根据等式不变的规律会解方程。

  2、 掌握解方程的格式和写法。

  3、 进一步提高学生分析、迁移的能力。

  出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

  要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式

  方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

  这就是方程的解,谁再来回顾一下我们是怎样解方程的?

  左右两边同时减去的为什么是3,而不是其它数呢?

  追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

  所以, x=6是方程的解。

  小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的.数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

  利用等式不变的规律,我们再来解一个方程。

  出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

  抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

  展示、订正。

  通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  1、 完成“做一做”的第1题。

课堂小结。

  这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

  在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

  1、在具体情境中理解算理,经历代数的过程。

  本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时减去相同的数是本节课的重点。我通过创设情境,让学生来领悟算理,突显出本节课的重点。

  2、在直观操作中掌握方法,发展数学素养。

  在本节课中,通过充分的直观,利用学生熟悉的素材,力图把方程建构于天平之中,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的操作解释、验证中发展学生的数学素养。

  3、困惑:纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?

解方程的教案11

  设计说明

  本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:

  1、在操作实践中验证等式性质(二)。

  在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。

  2、通过直观图理解解方程的过程。

  在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。

  课前准备

  教师准备:

  PPT课件

  学生准备:

  天平,若干个贴有标签的砝码

  教学过程

  猜想导入

  师:谁能说出我们学过的等式性质?

  [学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]

  引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。

  设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。

  动手验证,探究规律

  师:大家的猜想对不对呢?我们来验证一下。

  1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

  2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

  3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

  4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

  5、通过上面的游戏,你发现了什么?

  小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的`理解,体会等式的变化规律。

  解方程

  1、(课件出示教材70页方程:4y=20xx)

  师:你们能求出这个方程的解吗?

  (学生先独立尝试,然后小组交流,并汇报)

  预设

  方法一:想?×4=20xx,直接得出答案。

  方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。

  师:为什么方程的两边都除以4,依据是什么?

  预设

  生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  让学生说出用等式性质解方程的过程。

解方程的教案12

  教学内容:

  教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。

  教学目标:

  1.使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。

  2.使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。

  教学重点:

  理解等式的两边同时加上或减去同一个数,所得结果仍然是等式。

  教学难点:

  会用等式的这一性质解简单的方程。

  教学过程:

  一、教学例3

  1.谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的知识。请同学们看这里的天平图,你能根据图意写出一个等式吗?

  提问:现在的天平是平衡的,如果将天平的一边加上一个10克的砝码,这时天平会怎样?

  谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?

  2.出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?

  3.出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?

  谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?

  启发:这两组等式是怎样变化的?她们的变化有什么共同特点?

  4.提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?

  5.做练一练的第1题

  二、教学例4

  1.出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?

  2.讲解:要求出方程中未知数的`值,要先写解,要注意把等号对齐。

  3.完成试一试

  4.完成练一练

  提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。

  三、巩固练习

  1. 做练习一的第3题

  2.做练习一的第4题

  3.做练习一的第5题

  四、全课小结

  提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?

  五、作业

  完成补充习题。

  板书设计:

  等式性质和解方程

  等式的性质 解方程

  50=50 50+10=50+10 解: X+10=50

  x+a=50+a 50+a-a =50+a-a X-10=50-10

  X=40

  检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。

解方程的教案13

  一、教学目标

  1. 知识目标:掌握解一元一次方程的基本方法,能够正确地推导出方程的解。

  2. 能力目标:培养学生的逻辑推理和解决问题的能力,提高学生的数学素养。

  3. 情感目标:激发学生学习数学的兴趣,培养学生的自信心和团队合作精神。

  二、教学重点和难点

  1. 教学重点:掌握解一元一次方程的基本方法,能够正确地推导出方程的解。

  2. 教学难点:理解方程的含义和解方程的思维过程,培养学生的逻辑思维能力。

  三、教学准备

  1. 教学材料:白板、彩色粉笔、教学课件、学生练习册。

  2. 教学方法:情境教学法、解题法、归纳法。

  3. 教学内容:一元一次方程的基本概念、解题方法。

  四、教学过程

  1.引入:通过生活中的实际问题引入方程的概念,让学生了解方程是什么,有什么作用。

  示例:小明有一些苹果,如果每天吃掉3个苹果,5天后还剩12个苹果,那么小明原来有多少个苹果?

  2.讲解:介绍一元一次方程的概念和解题思路,让学生明确方程的含义和解方程的步骤。

  示例:用“x”代表小明原来有的苹果数,建立方程3x-15=12,推导出x=9,得出小明原来有9个苹果。

  3.练习:让学生进行练习,巩固所学知识,培养解题能力。

  示例:小华去商店买了一些铅笔,如果每支铅笔3元,买完后还剩10元,问小华买了多少支铅笔?建立方程3x+10=20,推导出x=3,得出小华买了3支铅笔。

  4.拓展:引导学生应用方程解决实际生活中的问题,增加学生的学习兴趣。

  示例:根据自己家庭的模型建立方程,让学生运用所学知识解决问题。

  5.对本节课的内容进行总结,梳理解题思路和方法,让学生对所学知识有个清晰的认识。

  五、教学反馡

  1. 检查学生的解题情况,对学生的表现给予及时的肯定和指导。

  2. 收集学生的问题和困惑,及时进行解答和引导。

  3. 鼓励学生勇于尝试,培养他们的.解决问题的能力。

  六、课后作业

  1. 完成课堂练习册的练习题。

  2. 撰写解题思路和方法的总结。

  3. 自主解决实际生活中的问题,应用所学方法。

  通过本节课的教学,学生将能够掌握解一元一次方程的基本方法,增强他们的数学学习兴趣和解题能力,提高数学素养,为以后的学习打下坚实的基础。

解方程的教案14

  教学内容:

  义务教育人教版数学五年级上册67页内容。

  教学目标:

  知识目标:

  1、通过演示操作理解天平平衡的原理。

  2、初步理解方程的解和解方程的含义。

  3、会检验一个具体的值是不是方程的解,掌握检验的格式。

  能力目标:

  1、提高学生的比较、分析的能力;

  2、培养学生的合作交流的意识。

  情感目标:

  1、感受方程与现实生活的联系。

  2、愿意与别人合作交流。

  教学重点:

  理解方程的解和解方程的含义,会检验方程的解。

  教学难点:

  利用天平平衡的原理来检验方程的解。

  关键:

  天平与方程的联系。

  教具:

  课件

  教学过程:

  一、游戏铺垫,引出课题(出示课件)

  师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!

  师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。

  生:从中你有什么想说的?或者你联想到了什么?

  生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)

  师过渡:是的,知识就是这样被有心人所发现的。

  二、探究新知

  师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)

  再给你点信息,这幅图谁能用一个方程来表示。

  生列方程,并说说你是怎么想的。

  1、解方程

  师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)

  汇报预设:①因为9-3=6②因为6+3=9所以x的值为6所以x的值为6(多少)

  师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。

  师:现在我们就将X+3=9这个方程转换到天平上来?(黑板贴图)

  师:球在天平不好摆,我们可以用方块来代替它。

  自主尝试:看着天平,如何去寻求x的值?

  请用笔记录下你的.想法。

  组织好语言上台汇报你的想法。

  教师统一书写:

  师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)

  追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)

  为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)

  生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)

  你学会了吗?赶紧和你的同桌说一说方法。

  2、强调格式:

  师:这个求解的过程和以前递等式有什么区别或相同的地方?

  生:等号对齐;等号两边都要写;最前面要写解字

  3、练习一:

  师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解?解:33+x○()=65○()

  x=()那么x-4.5=10呢?(学生独立尝试,一个学生板演)

  生完成填空和独立节解方程。(课件中校对)

  4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,

  叫“方程的解”;举例:x=3是方程x+3=9的解??

  而求方程的解的过程,我们叫“解方程”(板书)

  这些知识在数中有介绍,我们找到划一划读一

  读。(看书)

  两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)

  5、验算:

  师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?

  生:放进去计算一下。

  师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。生活动:尝试验算一个方程的解,另一个放心里代入验算。

  6、小结

  师:你学会了吗?你会解怎样的方程了?(含加法或减法)

  解方程的步骤?(结合板书和课件)

  生:解方程的步骤:

  a)先写“解:”。

  b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。 c)求出X的值。

  d)验算。

  四、巩固练习

  练习二:解方程比赛(书P67)

  (1)100+x=250(2)x+12=31※(3) x -63=36

  练习三:我是小法官:1.X=10是方程5+x=15的解()。

  2.X=10是方程x-5=15的解()。

  3. X=3是方程5x=15的解()。

  4.下面两位同学谁对谁错?

  X-1.2=4 X+2.4=4.6

  解:X-1.2+1.2=4-1.2=4.6-2.4

  X=2.8 =2.2

  师:谈谈你觉得解方程过程中有什么要提醒大家注意的?

  生:注意等式性质的正确运用!注意解方程时的格式!

  练习四:看图列方程并求解

  五、课堂总结

  师:我们这节课学习了什么?和大家来分享下!

  板书设计:

  解方程(含有加法或减法)等式性质解:X+3-3 =9-解方程(过程)学生板演天平贴图

  X=6 ?解(值)检验:方程左边=x+3

  =6+3

  =9

  =方程右边

  所以,x=6是方程的解。

解方程的教案15

  教学内容

  解方程:教材P69例4、例5。

  教学目标

  1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。

  2.进一步掌握解方程的书写格式和写法。

  3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

  教学重点

  理解在解方程过程中,把一个式子看作一个整体。

  教学难点

  理解解方程的方法。

  教学过程

  一、导入新课

  我们上节课学习了解方程,这节课我们来继续学习。

  二、新课教学

  1.教学例4。

  师:(出示教材第69页例4情境图)你看到了什么?

  生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。

  师:你能根据图列一个方程吗?

  生:3x+4=40。

  师:你是怎么想的?

  生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。

  师:说得好,你能解这个方程吗?

  学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

  师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

  生:先算出3个铅笔盒一共多少支,再加上外面的4支。

  师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。

  让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。

  2.教学例5。

  师:(出示教材第69页例5)你能够解这个方程吗?

  生1:我们可以参照例4的方法,先把x-16看作一个整体。

  学生解方程得x=20。

  生2:我们也可以用运算定律来解。

  师:2x-32=8运用了什么运算定律?

  生:运用了乘法分配律。然后把2x

  看作一个整体。

  学生解方程得x=20。

  师:你的解法正确吗?你如何检验方程是否正确?

  生:可以把方程的.解代入方程中计算,看看方程左右两边是否相等。

  三、巩固练习

  教材第69页“做一做”第1、2题。

  第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。

  这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。

  四、课堂小结

  1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

  2.在解方程时,可以运用运算定律来解。

  五、布置作业

  教材第71页“练习十五”第6、8、9.题。

【解方程的教案】相关文章:

解方程教案03-29

解方程教案(精选20篇)05-20

小学四年级解方程教案03-20

五年级数学教案:解方程04-10

教案中班教案02-23

教案教案及反思04-18

《藏戏》的教案 [藏戏教案]04-02

音乐教案-钟声-教案03-25

教案幼儿中班教案02-15

小班教案安全教案03-16