- 相关推荐
五年级数学教案数学广角
在教学工作者实际的教学活动中,常常需要准备教案,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的五年级数学教案数学广角,欢迎阅读与收藏。
五年级数学教案数学广角1
一教学内容
数学广角
教材第134、135页的例2、做一做4-6题。
二教学目标
1.通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
三重点难点
尝试用数学方法解决实际生活中的简单实际问题。
四教具准备
投影,天平。
五教学过程
(一)新授
1、解决9个零件的问题,归纳出找次品的最优方法。
(1)出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?
老师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品?
(2)自主探索。在有一定结果以后请一个学生上台展示方法,老师帮助梳理方法:分成几份?每份各是多少?至少需要几次就一定能找出次品,?
(3)反思自己的分法并在小组内交流。老师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证伐出次品?
(4)全班汇报。老师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
(5)老师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
(6)小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。
2、.推测多个零件找次品的解决办法。
(l)提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法都能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
(2)学生猜想。
(3)要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想,应该怎么分,称的次数就最少而且一切能找出次品?(平均分成3份,即4,4,4。)迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
学生汇报:3次。
(4)我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2,2,8)(3,3,6)(5,5,2)(6,6)......学生选择一种分法在纸上进行分析。
(5)全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
(6)小结:这样看来利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。
3.完成教材第136、137页练习二十六的第4一6题。学生独立完成,集体交流。
⑴第5题让学生脱离具体的操作活动,学会用图来分析和解决数学问题,从而培养学生的抽象思维能力。本题答案是至少需要称3次。
⑵第6题与例题不同,是另一种类型的“找次品”,因为不知道次品比正品重还是轻,所以问题就复杂多了。对本题而言,还是分成3份,至多称2次就一定能找出次品。第一次天平两边各放一袋白糖,若天平平衡则剩下的'那袋就是次品,再称一次就能判断次品是轻还是重了;若天平不平衡,则这两袋中一定有一袋是次品,可取下轻(或重)的那袋,把剩下的那袋放上天平,若天平平衡,则轻(重)的是次品,若天平不平衡,则重(轻)的是次品。对学有余力的学生,可以此题为起点,探索数量为4,5......时如何找出次品。
⑶第7题是一道关于集合运算的题目。学生在三年级下册学过用集合圈来分析解决问题,所以本题可引导学生利用集合知识画出图。再分析题意:两个组都没有参加的有6人,所以参加课外小组的一共有25一6一19(人)。这样,结合以前学过的知识,就可算出集合圈中表示既参加音乐组又参加美术组的有12+10一19=3(人)
(二)课堂作业新设计
1.有7瓶药片,其中1瓶中少2片,你能设法把它找出来吗?
2.有15盒巧克力派,其中1盒中少3块,设法把它找出来。
(三)课堂小结
本节课我们研究了在生活中如何从几个物品中找出次品的策略。在解决问题时,我们知道了很快解决这类问题的方法和原则:一是把待分的物品分成3份;二是要分得尽量平均,能够平均分的平均分成3份,不能平均分的,也应使多的与少的一份只差1。
五年级数学教案数学广角2
设计说明
1、利用多媒体创设教学情境。
新课伊始,让学生观看“挑战者”号飞机失事的全过程,让学生从机毁人亡的事件中感受到“次品”带来的危害,领悟到检验的重要性,培养学生的责任意识。这样的情境创设,体现了数学来源于生活、服务于生活、高于生活的教学理念。
2、重视引导学生用直观的方式清晰地表达出推理过程。
《数学课程标准》指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的'说明,能表达解决问题的过程,并尝试解释所得的结果。本设计在教学例1时,通过组织学生进行试验的操作活动,让他们在充分的操作、试验、讨论、探究中,找到解决问题的多种策略,然后引导学生用直观、简明的方式,清晰地表示出推理的过程,进一步理清思路,为后面数量更多的找次品问题做好认知和方法上的准备。
课前准备
教师准备
PPT课件 天平 3瓶钙片
学生准备
每人8张圆片学具 每组1张找次品记录表
教学过程
教学环节
教师指导
学生活动
效果检测
一、创设情境,引入新课。(5分钟)
1、课件播放“挑战者”号飞机失事的录像。
2、引导学生猜测造成飞机失事的原因。
3、导入新课。
1、看录像。
2、思考并回答老师提出的问题。
生1:驾驶员操作不当。
生2:飞机故障,零件不合格。
3、明确本节课要学习的内容。
1、列举生活中质量不合格的产品带来的危害有哪些?
二、实践操作,自主探究。(10分钟)
1、出示2瓶钙片:其中有1瓶少了3片,引导学生探究找次品的方法。
2、出示一架天平:阐述天平的工作原理和特点。
3、出示3瓶钙片:其中有1瓶少了3片,引导学生尝试找出轻的一瓶。
4、引导学生汇报找次品的方法。
5、引导梳理、比较:无论是先称哪2瓶,只要称一次就能找出次品了。
1、自主探究找次品的方法。
(1)打开瓶子把钙片倒出来数一数。
(2)用手掂一掂。
(3)用秤称一称。
2、认识天平,明确天平的工作原理,并在天平两端放入质量相同的物体,感受天平平衡的条件。
3、利用学具独立思考、自主探究,可以拿出3个学具代替3瓶钙片,进行实际操作。
4、各小组派代表汇报找次品的方法。
5、汇报:只要称一次就能找出次品了。
2、有5瓶钙片,其中1瓶少了4片。如果用天平称,天平两端各放1瓶,至少称()次才能找出次品;如果天平两端各放2瓶,至少称()次才能找出次品。
三、合作交流,发现最优方案。(15分钟)
1、课件出示例2。
指名读题,说一说“至少”的含义。
2、组织小组合作找出次品,填写表格。
3、引导学生观察表格,分组汇报找次品的方法。
4、引导学生观察表格:
(1)分成的份数、分的方法与找出次品所要称的次数有什么关系?
(2)怎样分找出次品需要称的次数最少?
5、用你发现的方法找出9个、10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的。
1、读题,说一说“至少”的含义。
2、小组合作,2名同学摆学具,1名同学用图示作记录,1名同学填写“找次品记录表”。
3、利用实物和表格汇报:
(1)分成8(3,3,2),至少要称2次。
(2)分成8(4,4),至少要称3次。
(3)分成8(2,2,2,2),至少要称4次。
4、讨论、交流,明确:把8分成3份(每份数量尽量相等)去称,能保证称的次数最少。
5、小组合作操作、验证,汇报试验结果。
3、用天平从7件物品中找出1件次品(次品轻一些),把7件物品分成()份称较合适。
4、有8瓶水,其中7瓶质量相等,另外有1瓶是糖水,比其他7瓶水略重一些,至少称()次能保证找出这瓶糖水。
四、巩固练习,拓展延伸。(8分钟)
1、引导学生完成教材112页“做一做”。
2、补充说明:分成3份的方法最好,不能平均分的,每份的数量尽量相等。
1、独立完成教材112页“做一做”。
2、汇报,说明自己的最优方案。
5、如果有12个零件,其中一个是次品(次品略重),那么应该怎么分,称的次数最少而且保证能找出次品?
五、课堂总结,布置作业。(2分钟)
1、通过今天的学习,你有什么收获?
2、布置课后学习内容。
谈自己本节课的收获。
五年级数学教案数学广角3
第1课时 植树问题
【教学内容】:教材P106~111及练习二十四。
【教学目标】:
知识与技能:通过学生熟悉的生活情境,学生会用线段图来表示植树问题中的三种植树情况,培养学生分析问题的能力m
过程与方法:学生能够初步建立植树问题的数学模型,能根据这个模型将生活中类似的问题进行分类,并试着应用模型中间隔与棵数的关系来解决问题。
情感、态度与价值观:培养学生认真审题的良好学习习惯。
【教学重、难点】
重 点:能理解间隔数与棵数之间的关系并应用到生活中去。
难 点:理解间隔数与棵数之间的规律(总长÷间距=间隔数,间隔数+1=植树棵数),并能运用规律解决问题。
【教学方法】:自主探索、合作交流。
【教学准备】:多媒体。
【教学过程】
一、情境导入
1.出示:公路两旁的树。
师:为什么要在公路的两旁栽上树呢?学生自由发言。
教师讲解:树木能够涵养水分减少水分的流失,还能净化空气,因此植树造林有助于环境的改善。(渗透植树造林的环保意识。)
2.揭题:今天我们就来研究有关植树的问题。(板书课题:植树问题)
二、互动新授
(一)提出问题--两端都栽、两端不栽。
1.出示教材第106页例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端都栽)。一共需要多少棵小树?
2.出示教材第107页例2:大象馆和猩猩馆相距60米,绿化队要在两馆间的'小路两旁栽树(两端不栽),相邻两棵树之间的距离是3米。一共要栽多少棵树?
引导:请同学们先在纸上用线段图画一画你的种法.再在小组中交流、讨论。
3.(出示线段图)问题分析:
两端都栽:
两端不栽:
(二)棵数与间隔数之间的关系。(找规律)
提问:刚才同学们用线段图表示了两种植树情况,现在同学们能否用算式来表示这两种植树情况呢?
1.两端都栽:(教学例1)
假设小路长20米,那么可以栽几棵?
用画线段图表示:
则20÷5=4,要栽5棵。
由此可知:lOO÷5=20(个),那么这里的20就是棵数了吗?应该是什么?
学生回答:不是,是间隔数,应该是20+1=21(棵)。
教师板书:关系:间隔数+1=棵数
追问:为什么这里的20是间隔数,而不是棵数?
学生回答,分析原因:100÷5=20只是求100米里面有多少个5米,所以20是间隔数而不是棵树。并得出公式:路长÷间距=间隔数(不是棵数,跟棵数没关系。)
2.两端不栽:(教学例2)
假设两馆间相距30米,小树之间的距离为5米,则30÷5=6(个),6-1=5(棵)
用画线段图表示:
由此可知:60÷3=20(个),20-1=19(棵)
教师板书:关系:间隔数-1=棵数
3.一端不栽:(教学例3)
出示教材第108页例3:张伯伯准备在圆形池塘周围栽树。池塘周长是120m,如果每隔lOm栽l棵,一共要栽多少棵树?
假设池塘的周长是60米,每隔10米栽1棵,则60÷10=6(棵)
用画线段表示:
由此可知:120÷1=12(棵)
教师板书:关系:间隔数=棵树
4.问题归类。
提问:刚才我们解决了植树时的问题,其实在日常生活中还有很多地方也有这样类似的情况,谁知道哪里还有这样的情况?
学生说,教师小结。
5.应用知识
⑴完成教材第107页“做一做”第1题。先让学生分组讨论,然后再说一说。
⑵完成教材第107页“做一做”第2题。先把题目的要求读一读,然后同桌互说,再指名学生说一说。
⑶完成教材第108页“做一做”。先让学生分析一下这个问题是不是“植树问题”,再在小组内讨论交流。
三、巩固练习
1.教材第109页练习二十四第3题。
(1)出示第3题。
指名一名学生朗读题目,理解题意。
(2)提问:从题目中你能得到什么信息?这种架设电线杆的问题应该怎么计算?
(3)学生讨论后交流。
(4)组织学生独立列式解答,并相互订正。
2.教材第111页练习二十四第13题。
(1)出示题目。
(2)提问:从题目中你能得到什么信息?这跟前一个练习题有什么不同,你又要如何计算?
(3)学生讨论后交流,指名学生板演,其余学生独立列式解答,然后集体订正。
3.教材第109页练习二十四第6题。组织学生读题并归纳有效信息,讨论这道题属于植树问题的哪种情况,并列式算出答案。
4.教材第111页练习二十四第14*、15*题。
(1)出示题目。引导观察,理解题意。
(2)学生先独立解题,然后小组讨论交流。
(3)教师组织汇报交流。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
五、作业:教材练习二十四剩余题。(课内时间不够,可在课外完成)
【板书设计】:
植树问题
两端都栽 两端不栽 一端不栽
间隔数+1=棵数 间隔数-1=棵数 间隔数=棵树
【五年级数学教案数学广角】相关文章:
数学广角四年级数学教案11-21
数学广角的教学策略11-22
五年级数学教案11-08
五年级教案数学教案12-27
小学广角教案12-22
五年级下册数学教案11-10
五年级上册数学教案04-18
小学五年级数学教案12-15