范文资料网>反思报告>教案大全>《《植树问题》教案

《植树问题》教案

时间:2024-04-03 07:33:38 教案大全 我要投稿

《植树问题》教案

  作为一位不辞辛劳的人民教师,时常需要用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?下面是小编为大家整理的《植树问题》教案,希望能够帮助到大家。

《植树问题》教案

《植树问题》教案1

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:

  多媒体。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗;还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的.距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树。每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的。重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题。解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

《植树问题》教案2

  教学目标:

  (一)利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

  (二)通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

  (三)在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用

  教学重点、难点:

  教学重点:

  让学生掌握解决封闭图形植树问题的思想方法。

  教学难点:

  探索发现封闭图形情况下棵树与间隔数之间的关系。

  教学过程:

  (一)创设情景,引入问题

  1.问题一:(出示图片)正方形桂花树台一边也要摆花,量一下边长是9米,每一米摆一盆,请大家帮助算一算,要几盆花?

  反馈:谁来告诉大家要摆多少盆花?

  预设:生1:91+1=10盆;生2:91=9盆;生3:91-1=8盆

  师:这里都有91这是什么意思?+1就是求出了什么?不加的就是求出了什么?-1求出了什么?

  小结:同学们用以前学习的植树问题帮我解决了这个数学问题。

  2.问题二:如果桂花树的正方形木台四周都要摆上10盆花,共要多少盆花?

  [通过展示校园中鲜花盛开的美丽景色,创设情境,引出生活中的数学问题,激发学生探究欲望。]

  生1:40盆,

  生2:36盆,

  师:到底是36盆还是40盆,要知道哪个答案是对的,怎么办?

  (让学生互相争论)(听听学生的意见,如果学生说画最好,如果学生说其他,教师可以介入说:老师这儿有个建议。)

  小结:看来有些同学认为用画一画的方法比较好是吧,那就请同学们用自己认为好的方法来验证到底是需要多少盆?

  (二)多元表征,感知模型

  1.出示学习建议:

  (1)你可以自己最喜欢的方法来说明你的答案是怎么来的

  (2)你也可以利用老师提供的材料(材料1),画一画,圈一圈。并写出算式。(花盆可以用符号表示)

  (3)先独立思考,再在小组中说一说你的方法。

  [把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。]

  2.反馈:你是怎么想的?(先把学生的四种方法都出来,再讲评每一种方法)

  预设:

  生1:102=20,82=16 20+16=36;

  生2:94=36;

  生3、84+4=36;

  生4:104-4=36;

  师:你能解释一下是怎么想的吗?(听完学生说自己的思路如果他没画图的,问一下用同样的算法,但是画图的)

  [通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。]

  回顾:刚才我们这四种方法解决了问题.(课件演示)

  [通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。]

  小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

  (三)探索规律,有效建模

  1.抛出问题:除了给桂花树正方形的台摆鲜花,在学校的其他的还有其他的一些地方也要摆一些鲜花,

  每边6盆,一共要多少盆? 每边4盆,一共要多少盆?

  2.反馈:你是怎么算的?(结合图说明算式的.意思)

  预设:

  生1:63=18 46=24

  生2:63-3=15 46-6=18

  生3:63+3=15 46+6=30

  3.讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

  小结:我们从正方形,三角形,六边形等等作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)边数=盆数

  4.

  展开:圆坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

  学生自主探索。

  交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?(学生在电脑上进行多媒体演示并讲述想法)

  你还有什么新的发现?(引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

  小结:花盆数=间隔数

  [让学生在电脑上直观操作,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。]

  5.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

  (1)学生探索

  (2)反馈

  (3)演示:将这些图形拉伸为圆,并转化为线段。

  小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

  [通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。]

  (四)拓展提升,实践应用

  1.学校为了美化校园环境,开展了摆花设计方案征集。有以下三种,请选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?你还能设计出其他方案吗?

  2.小结

  通过今天这节课的学习,你有什么收获?

《植树问题》教案3

  【教学内容】:

  人教版四年级下册第120页第八单元例3

  【教材分析】

  本次教学内容属于第二学段中“实践与综合应用”领域的教学。

  “课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。

  根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。

  【学情分析】

  学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。

  学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。

  【教学目标】

  1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

  2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

  3.在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用。

  【教学重、难点】

  教学重点:让学生掌握解决封闭图形植树问题的思维方法。

  教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。

  【教学设想】

  本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭图形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。

  【教学过程】

  一、创设情景,引入问题

  1.播放花坛中由鲜花拼摆出的.不同形状的图案,学生欣赏图片,从中感受到鲜花排列的整齐特点。

  2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。

  3. 出示问题一:古柳周围正方形台面要摆花,边长是9米,每隔一米摆一盆,请大家帮助算一算,只摆其中一边需要多少盆花?

  4. 组织学生反馈::9÷1+1=10盆

  小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。

  5.出示问题二:如果古柳周围的正方形台面四周都要摆上10盆花,一共需要多少盆花呢?

  预设生1:40盆,生2:36盆。

  5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。

  〖通过展示生活中常见的花坛中鲜花组成的图案,结合生活实际创设装点校园的情境,激发学生学习兴趣,调动学生学习的主动性。引出生活中的数学问题,激发学生探究欲望。〗

  二、多元表征,感知模型

  1.出示学习建议:

  (1)请利用老师提供的材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)

  (2)画好后先独立思考,再在小组中说一说你的方法。

  〖把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。〗

  2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)

  预设:生1:10×2=20,8×2=16 20+16=36;生2:9×4=36;生3:8×4+4=36;生4:10×4-4=36; 〖通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。〗

  3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)

  〖通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。〗

  小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

  三、探索规律,有效建模

  1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)

  每边6盆,一共要多少盆?每边4盆,一共要多少盆?

  2.组织反馈:你是怎么算的?(结合图说明算式的意思)

  3.组织讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

  小结:我们将正方形,三角形,六边形等图形作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)×边数=盆数

  4.拓展练习、提出问题:圆形花坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

  学生利用材料自主探索。

  5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

  小结:花盆数=间隔数

  〖组织学生利材料自主设计,并进行交流讨论,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。〗

  6.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

  (1)学生利用材料自主探索

  (2)组织交流反馈

  (3)动态演示:将这些图形拉伸为圆,并转化为线段。

  小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

  〖通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。〗

  四、拓展提升,实践应用

  1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的图案,可以怎么摆?请和大家说说你的设计方案。

  2.组织学生汇报。

  3.小结

  通过今天这节课的学习,你有什么收获?

《植树问题》教案4

  教材分析

  本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的情况。

  这是学生第一次接触“植树问题”,是后继学习的准备,需要正确建立数学模型。

  教学目标

  1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。

  2、能利用数学模型解决简单的实际问题。

  3、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

  4、体会数学模型的'生活意义与作用,体验到学习的喜悦。

  学习重点:采取什么策略正确解决“一条线段并且两端都种”的植树问题。

  学习难点:发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。

  预设过程

  一、尝试解题发现问题

  1、揭题:今天我们来研究植树方面的问题。(板)

  2、课件呈现学习材料,请学生尝试。

  3、反馈,形成争议:

  1)100÷5=20

  2)100÷5+1=21

  4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。

  二、研究规律

  1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?

  2、生述师画,发现棵数比间隔数多1。

  3、自己尝试画图,完成表格。

  4、议:你发现什么?

  5、:当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1。(板)

  6、分析尝试题的正确解法

  三、练习

  1、变式练习

  2、扩展练习

  1、完成1-1。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)尝试完成,并反馈。

  2、完成1-2。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)议:怎么求总长?(板)

  3)尝试完成,并反馈。

  3、完成2。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?

  3)尝试完成,并反馈。

  四、

《植树问题》教案5

  学情分析:

  四年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。

  教材分析:

  “植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。

  设计理念:

  《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的.好奇心和求知欲,增强学生学习数学的兴趣。

  教学内容:

  人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。

  教学目标:

  知识与技能:

  1、理解间隔概念,知道间隔数与棵树之间的关系,初步建构植树问题的数学模型。

  2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。

  数学思考:

  1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  解决问题:

  能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。

  情感态度与价值观:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:会应用植树问题的规律解决一些相关的实际问题。

  教学难点: 建构数模,探寻规律。

  教学准备:课件、实物投影仪、每组一张表格

  教学流程:

  一、创设情景,导入新课。

  1、猜谜语

  师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”

  “现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)

  2、找间隔

  “生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)

  “我们的身边还有间隔吗,一起来找找吧!”

  3、揭示课题

  出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”

  “对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)

  二、自主探究,构建模型

  师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)

  1、设计不同方案

  师:“画一条线段表示12米的小路,你想怎么载就用示意图或线段图画出来吧!”教师巡视。

  2、展示不同方案

  投影仪展示学生的设计方案,问:“你是怎么画的?”

  师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。

  师:“今天这节课我们先来探讨两端都栽的情况。”

  3、小组探索、加强体验

  (1)提出问题

  出示例1(课件9)学生默读题目,找出关键词并做解释。

  师:“需要多少棵树苗呢?”指名说出不同的答案并板书。

  师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。

  (2)验证猜想

  演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想知道吗?就是将复杂问题简单化,在这里100米太长了,我们可以先在短距离的路上种种看。”(出示课件10)

  分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

  (3)总结规律

  小组内填写表格,观察:“你发现了什么规律?”板书规律

  “刚才通过画图知道了棵数,能不能通过计算得到呢?”

  师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)

  4、运用规律

  (1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。

  (2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

  三、巩固应用,内化提高

  师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

  1、公共汽车上(出示课件13)

  2、公路上(出示课件14)

  3、上楼梯(出示课件15)

  4、钟表上(出示课件16)

  引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

  四、回顾整理,反思提升

  师:通过今天的学习,你有什么收获?

  “对!今天你们发现了植树问题中的重要规律,我们是怎么得到的?”“你还学到了什么方法?”(复杂问题简单化)

  “收获方法比收获知识更重要,祝贺大家!”

  板书设计:

  植树问题

  两端都栽

  棵数=间隔数+1

  间隔数=路长÷间距

  路长=间隔数×间距

  100÷5+1=21(棵)

《植树问题》教案6

  设计说明

  这节课主要的教学目的是向学生渗透复杂问题从简单入手的思想,让学生有机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此本节课的设计说明如下:

  1.让数学走进生活。

  弗赖登塔尔说过:“数学是现实的,学生要从现实生活中学习数学。”在教学过程中以谜语导入,以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,能清晰地看出手指的根数与间隔数之间相差1,让学生认识并总结出间隔数和手指根数的关系,为下面的学习作铺垫,同时也激起了学生的学习兴趣。

  2.让学生成为学习的主人。

  教师是学习的引导者,学生是学习的主人,教师在学生的.学习过程中起到启发、引导的作用。在本节课的教学中,体现了学生的主体地位,发挥学生的主观能动性。因此,本节课的设计采用自主探究式学习模式,借助小组学习的方式让学生经历从探究发现规律到应用规律的实践活动过程,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法的内涵。

  课前准备

  教师准备PPT课件

  学生准备直尺

  教学过程

  谜语导入,揭示课题

  1.猜谜语:两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。(手)

  2.介绍间隔。

  (1)找一找。

  师:勤劳的人们用双手创造了幸福的生活,在我们的手上也隐藏了数学的奥秘,同学们想知道吗?伸出你的左手,你看到了什么?

  (2)数一数。

  师:5根手指之间有几个空?

  (3)讲一讲。

  师:在数学上,我们把像这样的空叫做间隔,手上每两根手指之间都有一个间隔。也就是说,5根手指之间有4个间隔,间隔数为4。(师伸出4根手指、3根手指、2根手指)现在有几个间隔?

  (4)说一说。

  师:你们发现手指数和间隔数的关系了吗?谁能说一说?(手指数比间隔数多1或间隔数比手指数少1)

  3.引入新课。

  师:生活中,间隔随处可见。每相邻两棵树之间的距离也是一个间隔,这节课我们就一起来研究和解决一些简单的与间隔有关的问题

《植树问题》教案7

  教学内容:

  人教版小学数学五年级上册第106页例1。

  教学目标:

  1、知识与技能目标:

  (1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

  (2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

  2、过程与方法目标:

  (1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

  (2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

  (3)、培养学生的合作意识,养成良好的交流习惯。

  3、情感态度与价值观目标:

  (1)、感受数学在生活中的广泛应用。

  (2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

  教学重点:

  通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的'数学模型。

  教学难点:

  把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

  教学过程:

  一、谜语导入。

  (1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

  谁能很快说出谜底?(生口答)。

  师:你思维真敏捷。

  (2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

  (3)、认识间隔、间隔数。

  (预设1:数字5,5个手指;数字4,4个手指缝。)

  师:你观察得真认真!

  师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

  (预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

  师:你懂得真多,能告诉大家什么叫做间隔吗?

  生口答,师出示手的图片,板书“间隔”和“间隔数”。)

  (4)、认识生活中的“间隔”。

  师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

  师:想一想,生活中还有哪些地方有间隔?

  生充分交流

  (5)、揭示并板书课题。

  师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

  二、探究新知。

  (一)、创设情境,提出问题。

  1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

  2、理解题意。

  (1)、从题目中你得到了哪些数学信息?

  (2)、理解题意。

  师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

  题目中,“两端都栽”是什么意思?

  师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

  (3)、同学们大胆猜测一下,一共要栽多少棵?

  (指名生答)

  (4)、提出验证。

  a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

  b:生尝试寻求方法。

  生:可以画一画图。

  师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

  (5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

  师:现在栽了多少米了?就这样一直栽到1000米处吗?

  (预设生:太麻烦了,浪费时间)

  (6)寻求“化繁为简”的数学方法。

  师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

  生尝试发表自己的想法。

  (预设生:50米、20米、10米

  师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

  师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

  师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

  (预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

  师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

  (二)、自主探究。

  (1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

  (2)、生独立填表。

  (3)、汇报交流:谁把你的结果向大家展示一下?

  (师:谁和他的结果一样请举手?

  师:看来大家都做得非常认真!)

  师:为了便于大家观察,我把表格展示在大屏幕上。

  (4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

  间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

  那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

  (5)、学生独立思考,充分交流。

  结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

  (6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

  学生口述答案。

  师:你真了不起!

  (三)、应用规律,解决问题。

  (1)、出示前面的例题。

  师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

  (2)、生找出正确解法。

  (3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

  (师:你讲得太棒了!老师真心佩服你!)

  (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

  小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

  师:请大家默读题目,然后在练习本上独立完成。

  三、学以致用。

  1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

  (课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

  生独立审题,尝试在练习本上独立完成。

  生交流方法和思路。

  2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

  (课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

  指名读题,理解题意。

  师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

  (学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

  大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

  汇报交流,说出思路。

  3、师:你们真了不起。请到知识城堡一展身手吧。

  (课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

  师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

  生汇报交流。

  四、全课总结。通过今天的学习,你有什么收获?

  生充分交流。

  师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

《植树问题》教案8

  学习目标:

  1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

  2.使学生经历和体验复杂问题简单化的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

  学习过程:

  一、知识铺垫

  马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

  1. 你都知道了些什么?

  2. 一共要栽多少棵树?你是怎样想的。

  二、自主探究

  大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的'距离是3m。一共要栽多少棵树?

  1. 你都知道了 。

  2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

  总结

  植树问题

  总长( )=( )

  两 端 栽: 棵 数=( ) +1

  一 端 栽: 棵 数=( )

  两端不栽: 棵 数=( ) -1

  三、课堂达标

  1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

  2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

  3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

《植树问题》教案9

  教学目标:

  1、借助画一画,摆一摆的方法,经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与段数(间隔数)之间的关系。

  2、用画线段图来分析问题,会应用植树问题的模型解决相关的实际问题,培养学生的应用意识和解决实际问题的能力

  3、在解决实际问题中,感受到身边处处有数学,使学生深刻感受到数学的应用价值。

  教学重点:探究棵数与间隔数之间的关系

  教学难点:应用植树问题的模型灵活解决一些相关的实际问题。

  教学过程:

  一、情境引入,生成问题

  师:在上课之前,老师了解了一下,发现我们班很多同学都很喜欢唱歌,现在离上课还有一点时间,我们一起来唱一首《幸福拍手歌》好吗?(齐唱:幸福拍手歌)

  师:如果感到幸福你就拍拍手,双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想知道吗?

  师:看着老师的手,你从中得到了什么数字?(5,5个手指)

  师:老师从中也得到了一个数字-4,你们知道它指的是什么吗?

  师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。我们手上每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指的时候有几个间隔呢?3个手指,2个手指呢?

  师:你们发现手指数与间隔数的关系了吗?谁能说一说?

  2.引入

  师:连手上都有这么多数学奥秘,看来数学真是无处不在!现在我们可以开始上课了吗?

  【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有关系,后面的学习做好铺垫,同时使学生感受数学与生活的密切联系。

  一、创设情境,揭示课题

  教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

  师:在我国的北方,冬天经常会出现沙尘天气,你们听说过吗?

  生:听说过。

  师:请同学们看一段录像。

  生观看

  师:沙尘暴给人们的生产和生活都带来了非常大的危害。同学们,你们知道吗?沙尘天气实际上是大自然对人类的一种惩罚。由于我们人类过去滥砍滥伐,破坏自然资源和生态环境,才造成今天的恶果。

  师:要治理沙尘天气,最好的办法是什么?

  生:植树造林

  师:对,植树造林。你们看,上至国家领导,下至学生,都积极投身到植树造林的活动。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题呢。这节课,我们就来研究植树中的数学问题。

  【设计意图】通过沙尘暴的图片、视频引入新课,过渡自然、真实,并能调动学生学习的主动性和趣味性。

  出示公告:为美化校园环境,现在面向全校学生征集植树方案,择优录取。

  师:你们想不想成为校园环 境设计师啊?请你们认真看看方案设计要求。

  【媒体】需要在一条路的一边种5棵丹桂树。你会怎么种,请设计植树方案。

  (桔色学具代表道路,黄色小棒代表丹桂树)

  学生活动:先独立 思考方案利用学具摆一摆。(利用目测的方法,做到两树之间的距离基本一致)

  再4人小组合作探讨,汇报方案。(看一看有几种不同的方法)

  (1)我是两端都种。(学具演示,板书)

  (2)我是一端种、一端不种。(学具演示,板书)

  (3)我是两端都不种。(学具演示,板书)

  二、共同探讨,感受新知

  师:你们真棒,设计出了三种方案。那我们一起来 讨论第一种情况。

  两端都种,棵数是5 ,道路被分成了几段(段数)?

  (棵数是5,段数是4)

  师:棵数和段数之间有什么关系?

  (棵数比段数多一)

  师:还可以怎么说

  (段数比棵数少一)

  师:可以用怎么样的算式来表 示棵数和段数之间的关系?

  板书:段数=棵数-1 (棵数=段数+1)

  师:段数多还是棵数多?棵数多(强调)

  师:请同桌小组讨论一下,剩下的两种情况棵数和段数之间的关系是什么?

  (第2种情况,只种一端,棵数是5,段数也是5,段数=棵数)

  (第3种情况,两端不种,棵数是5,段数也是6,段数=棵数+1)

  小结:分段有这三种情况,这就是我们今天研究的课题数学广场分段。

  板书:分段

  师:如果在这条路上装路灯,装8盏路灯又会出现怎样的情况呢?

  (画草图 ,画一条横线代表 道路,画圆代表路灯)

  两端都种 8盏灯 道路分成了7段 段数=盏数-1

  只种一端 8盏灯 道路分成了8段 段数=盏数

  两端不种 8盏灯 道路分成了9段 段数=盏数+1

  三、巩固应用 、内化提高

  填空:

  (1)一条路的一边装路灯,从起点到终点都要装,装10盏灯

  有( )间隔?

  师:想想是第几种情况,再回答问题。

  (第一种情况,两端都种。我是从“从起点到终点都要装”看出来的。段数=棵树-1 9个间隔。)

  师:这里的段数、棵数相当于问题里的什么?

  (段数相当于间隔数,棵树相当于盏数。)

  师:所以间隔 数等于什么?(间隔数=盏数-1)

  (2)在一条路的`一边插彩旗,从起点开始插,终点不插,共插了11面彩旗,这条路被分成了( )段?

  (第二种情况,只种一端。面数=段数 分成了11段)

  (3)在走廊一边摆花盆,走廊的起点与终点都不摆,把走廊分成了6段,一共需要( )盆花?

  (第三种情况,两端不种。段数=盆数+1;盆数=段数-1 需要5盆)

  (4)把一根木头,锯了11次,这根木头被锯成了( )段?

  (第3种情况 同两端都不种的情况一 样。锯子锯的 地方相当于植树处,锯了几次就好比种了几棵树,每段木头相当于树与树之间的间隔 段数=次数+1 锯了11次,锯成了12段。)。

  师:看来植树问题并不只是与植树有关,现在就让我们一起走进生活,去找寻生活中的植树问题。

  判断题:

  师:请同学们用手势表示

  (1)如果要把一根纸带剪20段,需要剪21次。(X)【第3种情况】

  (2)把一根木头锯了11次,一共锯了11段。(X)【第3种情况】

  (3)体育课上,10位同学排成一排,他们之间有9间隔。(√)【第1 种情况】

  选择题 :

  (1)小胖在一根绳上挂气球,绳子的两端都不摆挂,一共挂了9个气球,把这根绳子分成了( ③ )段? 【第3种情况】

  ①8段 ②9段 ③1 0段

  (2)一根绳子长15米,小胖把它剪成了5段,剪了( ① )次?

  ①4次 ②5次 ③6次 【第3种情况】

  (3)小胖从底楼走到3楼,他走了( ② )层楼梯?【第1种情况】

  ①3层 ②2层 ③4层

  动脑筋:

  (1)小胖在他家的游泳池的池岸边上放了8盆兰花,把游泳池的池岸分成了几段?

  (封闭图形就好比第二种情况,只种一端,盆数=段数)

  (2)如果在每两盆兰花之间再放上1盆茶花,需要几盆茶花?

  (每两盆兰花之间指的就是段数,有几段就放盆)

  (3)爸爸上楼的速度是小明的2倍,如果父子两人同时从底楼上楼,当小明走到3楼时,爸爸已经走到了几楼。

  (小明从底楼走到3楼,一共走了2层楼梯。所以这时候爸爸应该已经走了4层楼梯,到了5楼。【第1种情况】楼梯数=楼数-1)

  四、小结:今天我们所解决的这些问题,在数学上我们统称为植树问题。

  今天你有什么收获?

  (这节课我们学习了植树问题,通过动手画、摆、比,找到了植树问题的规律。

  只栽一端间隔数就是植树棵树,两端都栽植树棵数比间隔数多1,两端不栽植树棵数比间隔数少1)

  板书: 分 段

《植树问题》教案10

  教学内容:人教版五年级上册第七单元第一课植树问题

  教学目标:

  知识与技能:

  (1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

  (2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

  (3)从封闭曲线(方阵)中发现植树问题的规律。

  过程与方法:

  培养学生观察能力、操作能力以及与人合作的能力。

  情感态度与价值观:

  学生通过观察、操作、交流等活动探索新知。

  教学重难点:

  教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:基本规律的提炼和方法的应用。

  教学准备:

  教具准备:课件

  学具准备:练习本

  教学过程:

  一、课前谈话。

  同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

  二、探究规律。

  (一)1.出示题目

  这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

  ①理解题意

  a、 指名读题,从题中你了解到了哪些信息?

  b、 理解“两端”是什么意思?

  指名说一说,然后实物演示。

  指一指哪里是小棒的两端?

  说明:两端要栽就是小路的两头要种。

  ②学生动手操作。

  拿出小棒,同桌间互相说一说,画一画,摆一摆。

  ③同桌互相讨论后,全班汇报交流

  a、指名说一说:你一共摆了多少根小棒?

  上黑板上来摆给大家看一看。

  b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

  c、间隔与种树的棵数有什么关系?

  ④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

  2.改变题目条件变为:

  在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

  1.学生试解答

  2.用小棒检验

  3.说一说你的想法

  间隔数与栽树的棵数又有什么关系呢?

  学生试说后,教师小结。

  4. 基本练习:同学们做操,某竖行从第一人到最后一人 的`距离是24米,每两人之间相距2米,这一行 有多少人?

  5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (二)出示例2

  1、学生读题,理解题意

  ①“两馆间的小路”指的是哪一段?

  ②“小路两旁”指的是要栽几边?

  2、学生互相合作,用小棒摆一摆

  师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

  要求完成:

  ①你一共摆了几根小棒?

  ②每一边的小棒根数和间隔数之间有什么关系?

  3、全班交流

  4、教师小结

  这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

  (三)用摆小棒的方法教学例3

  教师小结:两端封闭的情况下 植树棵数=间隔个数

  三、练习应用

  1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

  四、课堂总结

《植树问题》教案11

  教学目标

  1、通过探究发现一条线段上两端要种植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  使学生掌握“两端都要种的植树问题”的解题方法。

  教学难点

  使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

  教学准备

  多媒体课件、小棒、直尺、卡片、探究表。

  课前互动

  1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……

  2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)

  3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

  教学过程

一、引入课题

  生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

二、引导探究,发现“两端要种”的规律

  1、情景导入例题

  ①课件出示校园图片。

  植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示操场图片)这是我们学校的操场,操场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?

  出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题

  b、理解“两端”“一边”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?

  说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  2、引发猜想

  师:三种意见(19棵、20棵、21棵),哪种是正确的呢?

三、解决两端都种求总长度的实际问题

  同学们发现规律的能力可真不错。下面我们玩个站队的游戏。

  1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到后一个同学的'距离是多少米?

  师:这个问题与刚才的类型有什么不同?学生试做,反馈。

  你运用哪个规律?(间隔长×间隔数=总长度)

  2、这一列共有10个同学呢?100个同学呢?

  3、这个规律,你能算算我们学校综合楼的长度吗?

  出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到后一棵一共多少米?学生口答。(示意选拔设计师)

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。

四、回归生活,实际应用

  其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?

  问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)

  2、请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)

  出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?

  学生讨论,汇报。(示意选拔设计师)

五、全课总结

  1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!

  小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?

  全长除以间隔长度。

  2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。

  例题:

  在一座长800米的大桥两边挂彩灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的距离都相等。求相邻两盏彩灯之间的距离。

  【思路导航】大桥两边一共挂了202盏彩灯,每边各挂202÷2=101盏,101盏彩灯把800米长的大桥分成101-1=100段,所以,相邻两盏彩灯之间的距离是800÷100=8米。

  练习题:

  1、在一条长100米的大路两旁各栽一行树,起点和终点都栽,一共栽52棵,相邻的两棵树之间的距离相等。求相邻两棵树之间的距离。

  2、一座长400米的大桥两旁挂彩灯,每两个相隔4米,从桥头到桥尾一共装了多少盏灯?

  3、六年级学生参加广播操比赛,排了5路纵队,队伍长20米,前后两排相距1米。六年级有学生多少人?

  1、在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了10面。这条道路有多长?

  答:5x(10-1)=45(米)

  2、在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了18盆。这条走廊长多少米?

  答:已知两边放,每边的花盆数是:18+2=9(盆)

  这条走廊长:4x(9-1)=32(米)

  3、在一条20米长的绳子上挂气球,从-端起,每隔5米挂一个气球,一共可以挂多少个气球?

  答:20-5+1=5(个)

  4、在一条长32米的公路一侧插彩旗,从起点到终点共插了5面,相邻两面旗之间距离相等,相邻两面旗之间相距多少米?

  答:32-(5-1)=8(米)

  5、在公园一条长25米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子距离相等。相邻两把椅子之间相距多少米?

  答:一侧放椅子数:12-2=6(把)

  相邻两把椅子之间相距:25+(6-1)=5(米)

  圆湖的周长1350米,在湖边每隔9米种柳树一棵,在两棵柳树之间种桃树2棵,两棵桃树之间的距离是()。桃树和柳树各植()、()棵。

  分析:在两棵柳树之间种桃树2棵,两棵桃树之间的距离是:9÷(2+1)=3(米);柳树的间隔数是:1350÷9=150(个),那么桃树有:2×150=300(棵),柳树有150棵,据此解答。

  解答:解:9÷(2+1)=3(米),柳树的间隔数是:1350÷9=150(个),柳树:150棵;

  桃树:2×150=300(棵);

  答:两棵桃树之间的距离是3米。桃树和柳树分别植300棵、150棵。

  故答案为:3米,300,150。

  1、一条马路两边共植树160棵,每相邻两棵树之间相隔8米,这条马路长多少米?

  2、在一条长1500米的公路两旁种树,计划相邻的两棵树相隔6米,每侧两端各种一棵,一共需要多少棵树苗?

  3、一座楼房,每上一层楼要走19个台阶,小强回家从一楼要走76个台阶。小强家住几楼?

  4、一条马路长800米,沿路的两旁共有82盏路灯,每两盏路灯相距多少米?

  5、一根木料16米,把它距成4米长的一段,每锯下一段要3分钟。把这根木料全部锯完要多少分钟?

《植树问题》教案12

  教学目标:

  1. 使孩子通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养孩子从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:

  多媒体课件。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的重要方式。”同时指出:“孩子是数学学习的主人,老师是数学学习的'组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 孩子自学探讨。(师巡视)

  3. 班内交流。孩子回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页孩子独立完成。订正时说说怎么想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  孩子完成后师批阅订正,发现问题及时解决。

  六、总结延伸:

  这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

《植树问题》教案13

  教学内容:义务教育课程标准实验教材四年级下册《植树问题》,117页例1。

  教学目标:

  1.使学生通过生活中的事例,初步体会解决植树问题的方法。

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。

  3.让学生感受数学在日常生活中的广泛应用,培养学生的应用意识和解决问题的能力。

  教学重点:用解决植树问题的方法解决实际问题。

  教学难点:栽树的棵数与间隔数之间的关系。

  教具准备:多媒体课件。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1.能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2.能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1.出示例1:同学们在全长100米的`小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2.学生自学探讨。(师巡视)

  3.班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1.做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2.122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

《植树问题》教案14

  《奥赛天天练》第25讲《植树问题》、第26讲《上楼梯与植树》,知识原理是一样的,都是应用一一间隔的规律解决问题。

  一一间隔的规律是指:两个不同的物体一一间隔地排成一行,如果两端的物体相同,则排在两端的物体比中间另一种物体多一个;如果两端的物体不同,则两种物体的个数相同;如果两个不同的物体一一间隔地排成一个封闭图形,两种物体的个数也是相同的(把封闭图形从任意一个点剪开展开,就可以得到与第二种情况相同的排列)。

  在植树问题中我们可以把树苗和间距看作两种物体,先求出间距的个数,再利用一一间隔规律,算出树苗的棵数。

  在爬楼问题中我们可以把楼层看着两端物体,把楼梯看做中间物体,再利用一一间隔规律,根据楼层求楼梯的层数。

  《奥赛天天练》第25讲,巩固训练,习题1

  【题目】:

  有16个同学排成一排,要求每2名学生中间放2盆花,需要放几盆花?

  【解析】:

  16个同学排成一排,每两个同学之间有一个间隔,共有间隔:16-1=15(个)

  每个间隔放2盆花,需要摆花:15×2=30(盆)。

  《奥赛天天练》第25讲,巩固训练,习题2

  【题目】:

  某城市举行长跑比赛,从市体育馆出发,最后再回到市体育馆。全长42千米,沿途等距离设茶水站7个,求每相邻两个茶水站之间的距离。

  【解析】:

  从题目给出条件:“从市体育馆出发,最后再回到市体育馆。”可知这次长跑路线是个封闭图形,所以茶水站个数与茶水站之间的间距的个数是相同的。所以每相邻两个茶水站之间的距离是:

  42÷7=6(千米)

  《奥赛天天练》第25讲,拓展提高,习题2

  【题目】:

  小敏用同样的速度在校园的林荫道上散步,他从第1棵树走到第6棵树用了5分钟,当他走了15分钟时应到达地几棵树?

  【解析】:

  首先要让孩子弄清:在散步过程中,与时间有直接数量关系的是路程,也就是树的间距,而不是树的棵数。

  走到第6棵树,走来5个间距,用了5分钟,每分钟的路程为1个间距:5÷(6-1)=1(个)。

  走15分钟,共走了15个间距,到达第16棵树:15×1+1=16(棵)。

  《奥赛天天练》第26讲,巩固训练,习题1

  【题目】:

  一根木料锯成4段用了6分钟,另外有同样的一根木料以同样的速度锯,18分钟可以锯几段?

  【解析】:

  首先要让孩子弄清:一、在锯木头的过程中,与时间有直接数量关系的是锯的次数和每次锯的时间,而不是锯的'段数;二、木头锯成的段数总比锯的次数多1。

  锯4段需要锯3次,锯一次的时间是:6÷(4-1)=2(分)。

  18分钟可以锯的次数是:18÷2=9(次)。

  18分钟可以锯的段数是:9+1=10(段)。

  《奥赛天天练》第26讲,巩固训练,习题2

  【题目】:

  时钟6时敲了6下,5秒敲完。那么,这只钟12时敲12下,几秒敲完?

  【解析】:

  与时间有直接数量关系的是钟每敲两下之间的时间间隔。

  时钟敲6下,有5个时间间隔共5秒,即每敲两下之间间隔1秒:5÷(6-1)=1(秒)。

  时钟敲12下有11个时间间隔,需时间:(12-1)×1=11(秒)。

  《奥赛天天练》第26讲,拓展提高,习题1

  【题目】:

  一个运动员参加马拉松赛跑,他从第1个茶水站跑到第4个茶水站共用了75分钟,已知从起点到终点每两个茶水站相距5千米(起点和终点都没有茶水站),他跑完全程共花了200分钟,问马拉松的赛程是多少千米?

  【解析】:

  从第1个茶水站到第4个茶水站中间有3个间隔,共用了75分钟,每跑一个间隔需要时间:75÷(4-1)=25(分钟)。

  每两个茶水站相距5千米,即这个运动员25分钟跑了5千米。200分钟跑的路程也就是马拉松的赛程:200÷25×5=40(千米)。

《植树问题》教案15

  1、重视知识的迁移和转化。

  知识迁移法就是利用新旧知识间的联系,启发学生进行新旧知识对照,由旧知识去思考、领会新知识,学会学习的方法。上节课我们已经学习了两端栽树时的间隔数与棵数之间的关系,掌握了两端栽树的解题方法,为本节课的学习打下了基础。学生已经发现了“两端栽树”的规律,这时老师提出如果两端都不栽树,棵数和间隔数之间又会有怎样的规律呢?有了前面学习的基础,学生的思维非常活跃,想表达的欲望也很强烈。通过动手操作,形成知识的迁移和转化,引导学生发现并总结规律,让学生的研究成果被认可,让学生有成就感,从而也增强了学生学习数学的信心。

  2、重视独立探究与合作交流相结合。

  《数学课程标准》明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。”有了前面的学习基础,先放手让学生独立探究,再合作交流。通过简单的例子验证前面的'猜测,发现两端都不栽树的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

  课前准备

  教师准备PPT课件学生准备直尺教学过程

  ⊙对比引入,揭示课题

  1、出示复习题:在一条60 m长的小路的一旁栽树,每隔3 m栽一棵(两端都栽),一共要栽多少棵树?

  (1)要求学生说一说自己是怎样解决这个问题的。(指名汇报)

  (2)对于两端都栽的植树问题,棵数和间隔数之间有怎样的关系?你能用一个式子表示它们之间的关系吗?(指名回答:棵数=间隔数+1)

  2、引入新课。

  师:同学们对于上节课的知识掌握得非常好!如果老师把上题改为:在一条60 m长的小路的一旁栽树,每隔3 m栽一棵(两端不栽),一共要栽多少棵树?

  (1)想一想,这道题与上一道题相比较,有什么变化?

  (2)说一说你是怎么理解“两端不栽”的。(学生思考后自由汇报)

  师:这节课我们就来研究一下“两端不栽”的植树问题,看一看棵数与间隔数之间有怎样的关系。(板书课题)

  设计意图:让学生在熟悉的情境中借助已有的知识经验开展学习,充分调动学生学习的积极性,让学生在不知不觉中进入学习环境。

  ⊙合作探究,发现规律

  1、从简单的数据分析,发现两端不栽的规律。

  (1)教师引导学生用画线段、摆图形、摆小棒等自己喜欢的方法在小组内研究,并完成下面的表格。

  (2)填写完后在小组内交流一下,你是用什么方法进行验证的?从这个表格中你发现了什么规律?(生自由汇报:两端不栽,棵数比间隔数少1或间隔数比棵数多1)

  设计意图:学生是学习的主人,设计丰富的探究活动,采用多样的学习方式,引导学生主动参与探究的过程。教师放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了他们自主探究的意识。教师恰当地向学生渗透“遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究”这一数学思想。

  2、自主学习,应用规律解决教材107页例2。

  (1)课件出示教材107页例2:大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3 m。一共要栽多少棵树?

  ①认真读题,分析题意,说一说自己发现的数学信息。 ②独立思考,怎么解决。 ③组内交流,确定方法。(2)交流汇报。

  师:请各小组把自己的解决方法介绍给大家,看哪个小组的最合理?①各小组汇报自己的算法。

  方法一60÷3=20(棵)20+1=21(棵)方法二60÷3=20(棵)20+1=21(棵)21×2=42(棵)方法三60÷3=20(棵)20-1=19(棵)19×2=38(棵)

  ②讨论哪种方法最合理。(学生讨论后汇报,重点说明“两旁”要乘2)3、总结规律。

  师:从前面的分析中你发现了什么规律?能用一个式子表示出来吗?(根据学生的汇报板书:棵数=间隔数-1或间隔数=棵数+1)师总结:在生活中,有这种规律的数学问题叫做两端不栽的植树问题。

  设计意图:如果说生活经验是学习的基础,学生间的合作交流是学习的推动力,那么本环节将“发现规律”与“运用规律”结合起来,通过不完全归纳法验证自己找到的规律,渗透了代数思想。

  ⊙联系实际,巩固应用

  1、教材109页5题。(结合生活实际去分析题意,独立解答)2、教材109页6题。(应用规律进行解答)⊙全课总结

  同学们,今天你有哪些收获?在应用规律解决问题的时候需要注意些什么呢?⊙布置作业教材110页8题。

  板书设计植树问题(两端不栽)

  棵数=间隔数-1或间隔数=棵数+1

  60÷3=20(个)20-1=19(棵)19×2=38(棵)

【《植树问题》教案】相关文章:

植树问题教案02-21

《植树问题》教案03-12

植树问题教案(精选15篇)03-01

植树问题教案(精选20篇)03-27

《封闭图形植树问题》教案04-02

植树问题教案15篇02-21

植树问题封闭图形教案03-07

五年级植树问题教案03-09

五年级上册植树问题教案03-09