范文资料网>反思报告>教案大全>《六年级数学教案

六年级数学教案

时间:2023-11-17 17:27:36 教案大全 我要投稿

六年级数学教案15篇【经典】

  作为一名教职工,可能需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。写教案需要注意哪些格式呢?下面是小编为大家整理的六年级数学教案,仅供参考,欢迎大家阅读。

六年级数学教案15篇【经典】

六年级数学教案1

  学材分析

  整理与复习学到的知识,试一试第1题。

  学情分析

  学生知识的整理和归类。

  学习目标

  1、进一步理解和掌握以前学过的知识和计算方法。

  2、对所学知识进行巩固和复习。

  导学策略

  练习法

  教学准备

  小黑板、投影仪、投影片

  导学流程设计:

  教师预设

  学 生活动

  一.引入

  1.问:以前几个单元我们一起学习了哪些知识?指名回答。

  2.师生一起归纳、整理几个单元所学内容。

  3.揭示课题。

  4.请学生把知识进行简单的整理。并写下来。

  5.与同学进行交流。

  二.展开(要多设计一些学生生活实际的题目,让题目靠近学生生活。)

  1.根据学到的知识,请学生提问题。

  2.学生自己尝试解决。

  3.与同学进行交流。

  注意学生的参与性和积极性。

  三.综合应用。

  投影出示P66练一练第1题。

  先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程,最后,教师讲解。

  三.总结

  四.作业

  学生指名回答。以前几个单元我们一起学习了哪些知识?

  学生把知识进行简单的.整理。并写下来。

  与同学进行交流。

  根据学到的知识,请学生提问题。

  学生自己尝试解决。

  与同学进行交流。

  先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程。

  教学反思

  达标情况分析:很好

  教学心得体会:多给学生一些思考的空间,学生更喜欢。

六年级数学教案2

  教学目标

  1.理解圆柱体体积公式的推导过程,掌握计算公式.

  2.会运用公式计算圆柱的体积.

  教学重点

  圆柱体体积的计算.

  教学难点

  理解圆柱体体积公式的推导过程.

  教学过程

  一、复习准备

  (一)教师提问

  1.什么叫体积?怎样求长方体的体积?

  2.圆的面积公式是什么?

  3.圆的面积公式是怎样推导的?

  (二)谈话导入

  同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)

  二、新授教学

  (一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)

  1.教师演示

  把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.

  2.学生利用学具操作.

  3.启发学生思考、讨论:

  (1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)

  (2)通过刚才的实验你发现了什么?

  ①拼成的'近似的长方体和圆柱体相比,体积大小没变,形状变了.

  ②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.

  ③近似长方体的高就是圆柱的高,没有变化.

  4.学生根据圆的面积公式推导过程,进行猜想.

  (1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

  (2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

  (3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

  5.启发学生说出通过以上的观察,发现了什么?

  (1)平均分的份数越多,拼起来的形体越近似于长方体.

  (2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.

  6.推导圆柱的体积公式

  (1)学生分组讨论:圆柱体的体积怎样计算?

  (2)学生汇报讨论结果,并说明理由.

  因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)

  (3)用字母表示圆柱的体积公式.(板书:V=Sh)

  (二)教学例4.

  1.出示例4

  例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

  2.1米=210厘米

  50210=10500(立方厘米)

  答:它的体积是10500立方厘米.

  2.反馈练习

  (1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?

  (2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?

  (三)教学例5.

  1.出示例5

  例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?

  水桶的底面积:

  =3.14

  =3.14100

  =314(平方厘米)

  水桶的容积:

  31425

  =7850(立方厘米)

  =7.8(立方分米)

  答:这个水桶的容积大约是7.8立方分米.

  三、课堂小结

  通过本节课的学习,你有什么收获?

  1.圆柱体体积公式的推导方法.

  2.公式的应用.

六年级数学教案3

  一,教学目标

  1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。

  2,培养学生的观察,比较,概括和动手操作能力。

  3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

  二,教学重点

  掌握并理解圆的周长,公式推导过程。

  三,教学难点

  理解圆周率的意义。

  四,教学过程

  一,创设情境,提出问题

  1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。

  2,你们知道这圈花边的边长是什么 (生:圆的周长。)

  3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法

  二,师生共同提出假设

  1,请学生回忆正方形周长和边长的关系。(边长×4)

  2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢

  生:半径,直径……

  3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么

  学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。

  4,师:你估计圆的周长是其直径的几倍

  生猜想:3倍左右。

  5,师:你有办法验证吗 生讨论

  教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。

  三,合作交流,发现规律

  1,学生思考后可能出现的以下办法:

  ⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。

  ⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。

  师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的'周长的普遍规律呢

  ⑶ 学生在小组内动手操作,测量进行验证。

  直径(cm) 周长(cm) 周长是直径的几倍

  2 6。2 3倍多一点

  3 9。1 3倍多一点

  4 12。9 3倍多一点

  2,

  a,”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)

  b,结合圆周率进行爱国注意教育。

  c,师生共同推导计算圆的周长公式。

  教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。

  四,实践应用,拓展新知

  1,学生尝试求圆的周长

  d=2cm r=3。5cm d=10cm

  2,圆形花坛的直径是20cm,它的周长是多少m

  3,请同学们画一个周长是15cm的圆。

  教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。

  五,,体验成功

  1,通过这节课的学习,你学会了什么

  2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm

  板书设计:

  圆的周长

  围成圆的曲线的长叫做圆的周长。

  c=πd c=2πr

六年级数学教案4

  教学目标知识目标:

  理解比例的意义,认识比例各部分的名称。

  能力目标:

  能运用比例的意义判断两个比能否组成比例,并会组比例。

  情感目标:

  感受数学的奥秘,培养数学兴趣。

  教学重、难点教学

  重点:理解比例的意义。

  教学难点:能根据比例的意义写比例.

  突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。

  教学媒体多媒体课件、小黑板

  教学活动及主要语言预设学生活动预设

  一、创境激疑

  上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。

  回顾

  产生疑问

  二、互动解疑

  1、比例的意义

  在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。

  (1)写出每个图片的长与宽的比

  (2)求出各比的比值

  (3)观察特点,写出规律

  板书:

  图片A:6:4=3:2=1.5

  图片B:3:2=1.5

  图片C:8:3=2.66……

  图片D:12:8=3:2=1.5

  图片E:12:2=6

  比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。

  结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的`式子叫做比例。

  巩固练习:

  (1)要求每个学生写出一个比例,教师巡视指导且批阅。

  (2)要求每个学生写出一个比例,同桌交流。

  (3)做一做教材表格的题,完成后由教师批改。

  2、认识比例各部分名称

  组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。

  在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:12:6=8:4中12和4是比例6和8是比例

  观察

  先独立思考

  指名汇报

  共同发现、小结

  理解

  自主思考

  小组内交流探究

  汇报交流

  独立填写

  同桌交流

  指名汇报

  三、启思导疑

  1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)

  2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)

  指名谈发现

  理解

  识记

  四、实践运用

  (一)填一填。

  1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。

  2、用6,3,9,8组成一个比例是( )。

  (二)下列那几组的两个比可以组成比例?为什么?

  (1)4:5和8:20

  (2)15:30和18:36

  (3)0.7:4.9和140:20

  (4)1/3:1/9和1/6:1/8

  (三)按要求写一写。

  1、先写出比值是3的两个比,再组成比例。

  2、根据1.2×25=0.6×25写出两个比例式。

  独立思考

  指名汇报

  评价订正

  五、总结评价

  这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?

  自由小结

  板书设计:比例的认识

  12:6 = 8:4

  6:4 = 3:2

六年级数学教案5

  教学目标

  1. 理解圆柱体积公式的推导过程,掌握计算公式。

  2. 体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

  3. 感受探索数学奥秘的乐趣,培养学习数学的积极情感,

  教学重难点

  教学重点:掌握和运用圆柱体积计算公式

  教学难点:圆柱体积公式的推导过程

  教学过程

  一、复习导入

  同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

  出示学习目标:

  理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。

  能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

  二、图柱转化,自主探究,验证猜想。

  (一)猜想。

  1、下面长方体、正方体和圆柱的底面积都相等,高也相等

  (1).长方体和正方体的体积相等吗?为什么?

  (2).猜一猜,圆柱的体积与长方体、正方体 的体积相等吗?用什么办法验证呢?

  2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

  [数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

  3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

  (二)操作验证。

  1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

  在操作时,学生分组边操作边讨论以下问题:

  ①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

  ②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

  ?.拼成的近似长方体的高与原来的圆柱的高有什么关系?

  2、小组代表汇报

  (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

  3、电脑演示操作

  (1)电脑演示圆柱体转化成长方体的过程:

  仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的`什么?长方体的宽和高又相当于圆柱的什么?

  动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

  (分的分数越多,拼成的图形就越接近长方体)

  (2)根据学生的观察、分析、推想,老师完成板书:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V=Sh

  (3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

  三、练习巩固,灵活应用

  闯关1.

  1、填表。(课件)

  2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?

  让学生试做,集体反馈。

  闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?

  学生讨论、交流、汇报。

  小结:解决以上问题的关键是先求出什么?(生:底面积)

  闯关3.

  1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的( ),它的底面积等于圆柱的( ),高就是( )的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于( )乘( ),用字母表示是( )。

  2、圆柱底面半径为r厘米,高为h厘米,体积v=( )立方厘米

  学生在练习本上独立完成,集体反馈。

  3、我是小法官

  1.正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。( )

  2.长方体、正方体、圆柱体的体积都 可以用底面积乘高的方法来计算。( )

  3.圆柱体的底面积越大,它的 体积越大。( )

  4.圆柱体的高越长,它的体积越大。( )

  5.如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍.( )

  4、填空

  1.一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积( )。

  2. 一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是( )立方厘米。

  拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?

  四、课堂小结

  学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

  五、布置作业

  教科书第21页练习三第1-4题。

六年级数学教案6

  教学内容:

  教材第63页的例6及相应的“试一试”、“练一练”,练习十二第9~12题

  教学目标:

  1、结合生活中具体的情景使学生经历探索分数乘除混合运算的计算方法的过程。

  2、能正确解答分数连除或分数乘除混合运算的试题。

  3、鼓励学生用多种方法探究解决问题的策略,进一步培养独立思考、主动与他人合作交流、自觉检验等学习习惯,获得一些成功的体验,增强学好数学的信心。

  教学资源:

  挂图,小黑板

  教学过程:

  一、复习引入

  上节课我们学习了用方程解答简单的分数除法应用题,这节课我们学习分数连除和乘除混合运算。(揭示课题)

  二、教学例6

  1.出示例6中的三个条件,引导理解题目意思。

  (1)读题理解题目意思。

  (2)从题目中我们可以知道哪些信息?这些信息之间有什么关系?通过信息的组合,我们又可以获得什么新的信息?

  2.讨论解决问题的策略。

  讨论练习十二第10~11题中的.数量关系。

  (1)画出各题中的关键句。

  (2)说说每题中关键句中的分数是什么意思,并说出数量关系式。

  (3)完成练习十二第12题。

  各自练习后,将计算的结果填在书上。

  三、交流:你是分别根据什么计算出各个洲的面积的?

  四、作业:练习十二第9、10、11题。

  教学后记:

六年级数学教案7

  一、教学内容

  用方向和距离描述平面上两个点的相对位置关系并在此基础上描述简单的路线图。

  二、教学目标

  1.使学生会根据平面上一个点的位置说出它相对于观测点的方向和距离;会根据一个点相对于观测点的方向和距离确定这个点的具体位置;会描述简单的路线图。

  2.通过让学生想象出物体的方位和相互之间的位置关系,培养空间观念。

  3.使学生通过用方向和距离来表示平面上的位置,初步感受坐标法的思想。

  4.使学生通过生活实例学习位置与方向的知识,感受数学与生活的紧密联系,学会在生活中应用数学。

  三、主要变化与具体编排

  (一)主要变化

  “用数对确定位置”和“用方向和距离确定位置”是直角坐标和极坐标思想在小学的初步渗透。在上一轮教材的实验过程中,教师普遍反映“用方向和距离确定位置”的教学难度要大于“用数对确定位置”。因此,此次修订,根据各方意见,把实验教材六年级上册的“用数对确定位置”移至五年级上册,把实验教材四年级下册的“用方向和距离确定位置”移至本册。

  (二)具体编排

  在具体编排上,也更加注重体现层次性。教材选择台风移动这一学生相对熟悉的现实素材作为一个大背景,用“情境串”的形式引出3个例题。

  1.例1。

  教材以电视播报台风警报作为情境引入,具有很强的生活气息,使学生充分感受生活和数学的紧密联系。

  教材直接给出标出台风中心和A市的方位图,让学生利用图示理解台风中心“位于A市东偏南30°方向、距离A市600km”所表示的含义。

  确定一个位置,需要方向和距离两个条件,教材先通过小精灵提问的方式,让学生思考东偏南30°表示什么意思,这也是本例的重点。使学生看到东偏南30°表示的是一条射线上的所有点,如果只有这一条件,还无法判断台风中心的确切位置,由此引出距离。 “东偏南30°”与“南偏东60°”含义完全相同,只是生活中更习惯于选择小于45°的角度来描述。图示中用一条线段表示100km,由于学生还没学习比例尺,只要能说出这样的6条线段表示600km就可以了,不必涉及比例尺。

  最后小精灵问“台风大约多少小时后到达A市”,主要目的是为了在解决实际问题的过程中,与例2进行很自然的情境连接。

  2.例2。

  本例在学生通过例1了解了方向与距离的含义之后,让学生根据给出的某个点相对于参照点的方向和距离,在方位图上找到该点的位置。延续了例1的情境,情节连贯,随着现实情境的发展,自然地引出数学问题。

  教材给出了两类定位的情形,一类是非正东、正南、正北、正西的',一方面需要确定角度,另一方面需要确定距离;另一类的正东、正南、正北、正西的,只需要确定距离即可。

  教材采取小组合作的方式,提示学生应该如何根据方向和距离确定位置。先确定方向再确定距离和先确定距离再确定方向这两种方法都可以用,但学生通过尝试,一般会主动选择先确定方向,然后在该方向所在射线上根据相应的距离找到该位置。

  3.例3。

  教材呈现了台风从生成地出发、经过四次方向改变的大致路径,让学生用数学的语言来描述简单的路线图。路线图中包括了例1和例2中台风的移动路线,体现了情境的整体性和知识的综合性。

  路线图描述的不仅仅是两个点的静态关系,而是物体在多个点之间的运动关系。除了整条路线的起点和终点之外,其他点都既是某一段路线的终点,也是下一段路线的起点。教材通过学生对话的方式,给出了分段描述的示范,使学生明白方向与距离的描述是具有相对性的,并掌握在描述每一段路线时要注意的几个关键点:起点在哪儿?终点在哪儿?沿着什么方向?移动了多少距离?

  四、教学建议

  1.注意联系学生的生活经验和已有知识,引导学生自主探索新知,发展空间观念。

  2.以问题为载体,鼓励学生通过自主探究、合作交流,克服教学重难点,初步建立坐标观念。

六年级数学教案8

  教学内容:课本P19页和练习五。

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义和怎样求倒数。

  教学难点:求倒数方法的叙述。

  教学过程:

  二、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  三、自学新课:

  自学书本P19。并思考以下问题:

  1)什么叫倒数?

  2)怎么求一个数的倒数?

  3)是不是任何数都有倒数?小数有吗?带分数有吗?

  四、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  1)两个数。

  2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  五、练习

  1、判断下列各组数是否互为倒数,为什么?

  和和和和

  2、同座同学相互举出几组倒数。你怎么知道同学说的.对不对?

  1)5的倒数是多少?

  2)所有的自然数都有倒数吗?1的倒数是几?

  3)0有没有倒数?为什么?

  4)怎样求一个数的倒数?

  4、完成课本P19页的“做一做” 。

  5、辨析:求3/5的倒数,写作:3/5=5/3。

  五、思考:0.2的倒数是多少?

  六、小结。

  请学生说一说这节课学习了哪些内容。

  七、作业:练习五3—8。

六年级数学教案9

  教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

  教学要求:

  1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

  2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

  教 具:

  教学天平、小黑板。

  学 具:

  自制的简易天平、定量方块。

  教学步骤:

  一、复习

  1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)被除数=( )○( )

  (6)除数=( )○( )

  2.求未知数X(并说说求下面各题X的依据)。

  (1)20十X=100 (2)3X=69

  (3)17X=0.6 (4)x5=1.5

  二、新授

  1.理解和掌握方程的意义。

  (1)出示天平,介绍使用方法(演示)后,设问:

  在天平两边放物体,在什么情况下才能使天平保持平衡?

  (两边的物体同样重时,天平才能保持平衡。)

  (2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

  板书:20十30=50

  指出:表示左右两边相等的式子叫等式。

  (并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

  (3)教学例2(课本105页)。

  ①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?

  板书:20+?=100

  ②等式20+?=100中的?是未知数,通常我们用X来表示,那么上面的'等式可写成 (板书)20十X=100

  ③比较:等式20+X=100与等式20+30=50有什么不同?(含有未知数)教师指出,20+X=100是含有未知数的等式。

  ④想一想:X等于多少,才能使等式20+X=100左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)

  (4)教学例3(课本106页)。

  出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

  ①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)

  ②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

  (板书)3X=234

  ③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)

  (5)方程的意义:

  综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

  20+30=50一般的等式

  20+X=200 含有未知数的等式

  3X=234 称之为方程

  (板书)像20+x=100 3X=234 X10=35 X12=5等,含有未知数的等式叫做方程。

  ①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

  ②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。)

  (6)练一练(指名学生判断,并说明理由)教材第106页做一做。

  2.学习解简易方程。

  (i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

  (板书)使方程左右两边相等的未知数的值,叫做方程的解。

  例如:X=80是方程20+X=100的解;

  X=78是方程3X=234的解。

  (板书)求方程的解的过程叫做解方程。

  ②方程的解和解方程有什么联系和区别?

  方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

  (2)教学例1:

  解方程X一8=16

  ①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

  ②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)

  (板书)解方程X一8=16

  解::根据被减数等于减数加差;

  X=16十8(与原来学过的求X的思路相同)

  X=24

  检验:把X=24代人原方程

  左边=24一8=16,右边=16

  左边=右边

  所以X=24是原方程的解。

  总结有关的格式要求:

  ①做题时要先写上解字。

  ②各行的等号要对齐,并且不能连等。

  ③方框里的运算根据可以不写。

  ④验算以检验的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

  指导学生看教材第105一107页。

  三、巩固

  1.教材107页做一做。

  2,教材第108页练习二十六第1、2题。

  四、练习

  教材第108页,练习二十六第3~5题。

  作业辅导

六年级数学教案10

  教学目的:

  1、使学生理解一个数乘以分数的意义,学会分数乘以分数的'计算方法。

  2、通过操作、观察培养学生的推理能力,发展学生的思维。

  教具准备:第4页例2的插图。长方形纸。

  教学过程:

  一、复习。

  1.计算下列各题并说出计算方法。

  2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)

  1.理解一个数乘以分数的意义。

  (1)第一幅图:一瓶桔汁重 千克,3瓶重多少千克?怎样列式?

  指名列式,板书:

  问: 表示什么意思?指名回答,板书:求3个 或求 的3倍。

  (2)出示第二幅图:一瓶桔汁重 千克,半瓶重多少千克?怎样列式?怎样表示半瓶?

  指名回答:半瓶用 表示;式子为: 。

  说明: 是求 的一半是多少,也就是求 的 是多少。板书:求 的 。

  (3)出示第三幅图:一瓶桔汁重 千克, 瓶重多少千克?怎样列式?

  指名回答,板书: ,问: 表示什么意思?指名回答,板书:求 的 。

  2.引导学生小结。

  ①.指出三个算式都是分数乘法,比较三个算式的不同点:

  第一个算式与第二、三个算式中乘数有什么不同?

六年级数学教案11

  一、教学目标

  (一)知识与技能

  1.了解“纳税”及“税率”的含义,并能进行有关应纳税额的计算。

  2.了解一些有关利率的初步知识,知道本金、利息和利率的公式,会利用利息的计算公式进行一些简单的计算。

  (二)过程与方法

  通过自主探索学习,体会到知识之间是相互联系的。

  (三)情感态度和价值观

  1.通过对纳税及储蓄的认识,体会依法纳税的光荣和储蓄对国家和社会的作用,理解储蓄的意义。

  2.认识到百分数在生活中的广泛应用,体会到数学与生活的密切联系。

  二、教学重难点

  教学重点:理解“纳税”“税率”及其相关概念的含义,并能进行应用。

  教学难点:将“税率”与“利率”相关问题与百分数应用题建立联系,正确解决实际问题。

  三、教学准备

  请学生课前收集有关纳税、储蓄的信息;教学课件。

  四、教学过程

  (一)创设情境,引入新课

  1.(课件出示教材第10页主题图)同学们,我们的祖国正在蓬勃发展中,为了让祖国更强大,人民生活更美好,国家投入了大量的人力、物力来进行建设,你知道这些钱是哪来的呢?

  2.谁能来说说什么叫纳税?为什么要纳税?

  【设计意图】通过图片展示,课前信息的收集和交流,使学生明白依法纳税的意义和重要性。

  (二)结合情境,学习新知

  1.理解“税率”的含义。

  (1)自学教材第10页,进一步明确纳税的意义。

  (2)反馈:根据自己的理解说说什么是纳税?什么是应纳税额?什么是税率?

  (3)介绍自己所了解的纳税项目并进行简单介绍。

  2.结合实例,进一步理解概念,并解决问题。

  (1)课件出示教材第10页例3。

  一家饭店10月份的营业额是30万元。如果按营业额的'5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?

  ①读题,说说“营业额的5%”是什么意思?这里的5%就是指的(税率)。

  ②学生独立完成。

  ③集体交流反馈,知道在这种情况下有如下关系成立:

  营业额×税率=营业税。

  (2)练习:出示教材第10页“做一做”。

  李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税。她应缴个人所得税多少元?

  ①读题,重点引导理解“扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税”这句话的意思。这里3%的税率是所有月工资的3%吗?教师可以适当补充有关个人所得税的税法规定。

  ②学生独立解决问题。

  ③集体交流反馈,知道在这种情况下有如下关系成立:

  (总收入-免征收部分)×税率=个人所得税。

  (3)对比两道题,了解税收的算法各不相同,要根据实际情况进行计算。

  【设计意图】在了解税率有关信息的基础上,进行问题解决,既可以让学生在实际情境中对概念有进一步的理解,又可以让学生利用概念的解读顺利地解决问题,使得问题解决和概念理解相辅相成,从而取得较好的学习效果。

  3.理解“利率”的含义。

  (1)除了税收,人们把有结余又暂时不急用的收入存在银行里,这也是支持国家建设的行为。你对储蓄有哪些了解?(学生根据课前了解说一说)

  (2)自学教材第11页内容,初步了解本金、利息、利率的意义。

  (3)结合实例理解信息。

  ①(实物投影出示存单的凭证)这里哪个是本金,哪个是利率,得到的利息又是多少?

  ②这是20xx年7月中国人民银行公布的存款利率,你发现什么?

  ③小结:存期不同,年利率也不同,银行的利率是国家根据经济发展的需要确定的。

  【设计意图】虽然对于储蓄这件事学生并不陌生,但是他们真正接触的并不多,在初步了解本金、利息、利率的基础上结合实例进行理解很有必要。

六年级数学教案12

  训练目标:

  1、理解解决有关排队中的数学问题的思维方法,会根据不同的思考方法列式。

  2、培养学生解决实际问题的'能力和良好的思维品质。

  训练重点:通过各种方法理解解决这类问题的方法。

  训练难点:减去重复的,加上遗漏的。

  教具学具:课件、1个红色圆片、10个蓝色圆片。

  训练过程:

  一、引入课题。

  1、出示题目:一排队伍,从前面数小红是第5个,从后面数小红是第6个。这排队伍共有几个人?

  2、排队游戏。

  3、引入课题。

  二、训练准备。

  1、课件出示:☆☆☆☆☆☆☆☆☆

  2、讨论:两种数法主要不同在哪儿?

  3、画一画。

  课件出示题目,学生在练习纸上画一画。

  ⑴△△△△▲

  从右往左数,▲是第5个,请你把盖住的△画出来。

  ⑵ ▲ △△

  从左往右数,▲是第4个,从右往左数,▲是第7个,请你把盖住的△画出来。

  4、画完后说一说:你是怎样想的?

  三、操作与思考。

  1、学生拿学具操作,指名一生用磁铁在黑板上摆一摆。

  数一数共有几个圆片?应怎样列式?说说算式中每个数字各表示什么。

  2、小结:像刚才那样,已知1个物体,1个图形或1个人在排列中的前后顺序数,计算总数时要注意减去重复的,加上遗漏的。

  四、练习。

  1、填空:

  ① ○

  从前面数,○是第9个,从后面数,○是第8个,这一排共有( )个图形。

  ② 一排图形,从上面数□是第4个,从下面数□是第8个,这排图形共有( )个。

  2、先画一画,再填一填。

  ①从左往右数,小花排在第8个,从右往左数,小花也排在第8个,这排小朋友共有( )个小朋友。

  ②一队动物去参加运动会,小兔的前面有3只动物,小兔的后面有10只动物,这队动物共有( )只。

  3、列式计算:

  一队动物去观看演出,它们排队进场,小熊前面有2只动物,小猪后面3只动物,小熊和小猪之间排着4只动物,这一队的小动物共有几只?

  4、思考题:

  ⑴有16个同学排队出操,从前面数小刚是第10个,从后面数,小刚是第( )个。

  ⑵18个小朋友排成一排,从左到右数明明排在第8个,从右往左数,红红排在第3个,明明和红红之间有几个小朋友?

六年级数学教案13

  教学内容:

  练习一6~8

  重难点:

  会灵活运用知识解决实际问题。

  突破方法:

  引导学生独立思考,合作交流。

  教学步骤:

  一、游戏引入:摆子连线。

  二、指导练习。

  1、练习一、6

  (1)出示方格纸,让学生在方格纸上把三角形平移。从平移的过程中你了解到哪些信息?

  (2)引导学生观察图形平移后,表示顶点位置的数对有什么变化?

  (3)试一试,小组交流。

  2、练习一、8

  (1)组织学生读题,理解题意。

  (2)讨论:怎样编号?

  (3)全班汇报交流。

  三、提高训练。

  练习一、7

  (1)组织学生读题,理解题意。

  (2)小组合作探究

  a、移一移,说一说。

  b、比较区别。

  c、提出数学问题并解答。

  四、课堂小结。

  五、补充练习。(单元格自行设计)

  1、先标出三角形各个顶点的位置,再分别画出三角形向右、向下平移5个单位后的`图形,再标明平移后图形各个顶点的位置。

  2、(1)赵东家在少年宫以东200m,再往南100m处;李倩家在公园以

  西的400m,再往北200m处。请在

  图中标出这两位同学家的位置。

  (2)赵东从家出发,依次路线是

  (12,2)

  (10,3)

  (9,5)

  (3,4)

  (4,2),你知道

  他今天先后去过哪些地方吗?

六年级数学教案14

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。

  【教学目标】

  1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

  2、进一步理解轴对称图形的特征,体会圆的特征。

  3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

  【教学重、难点】

  1、圆的特征。

  2、同一个圆里半径与直径的关系。

  【教具、学具准备】

  1、三角尺、直尺、圆规。

  2、教学课件。

  【教学设计】

  教 学过程

  教学过程说明

  一、实践操作。

  1、折一折。

  每人准备一个圆,请同学们想办法找出圆心。

  2、小组活动:剪几个圆,折一折,你发现了什么?

  小组交流。

  3、汇报:沿着任意一条直径对折,都能完全重合。

  4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。

  圆有无数条对称轴。

  在同一个圆里,直径的'长度是半径的2倍,可以表示为d=2rr=d/2。

  二、尝试练习。

  1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?

  正方形:4条

  长方形:2条

  等腰三角形:1条

  等边三角形:3条

  圆:无数条

  2、要求学生剪出书本第7页做一做的三幅图,沿中心点A转动,同学们发现了什么?

  三、巩固练习。

  1、练一练第一题。

  学生在书上填写,集体交流。

  2、练一练第二题。

  学生在书上填写,集体交流。

  3、练一练第三题。

  学生画出对称轴,集体交流。

  4、练一练第四题。

  学生实际测量,集体交流。

  5、练一练第五题。

  学生在书上填写,集体交流。

  使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。

  引导学生整理已学过的轴对称图形。

  让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。

  通过练习,进一步巩固所学知识。

  四、全课小结。

  【教学反思】

  学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。

  存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!

六年级数学教案15

  教学内容:教科书第68页例1和练习十一第1题。

  教学目标:

  1、综合运用统计知识,学会从统计图中准确提取统计信息,并作出正确的判断和简单的预测。

  2、理解统计图中各个数据的具体含义,培养同学仔细观察的习惯。

  教具准备:多媒体电脑,投影仪。

  教学过程:

  一、情景引入

  同学们,你们喜欢看电视吗?你们知道家里的电视是什么品牌吗?

  今天我们就去彩电市场看看各种彩电的市场占有率吧!(出示教科书第68页例1的扇形统计图)

  二、探究交流,总结规律

  1、小组研讨、交流。

  根据这幅统计图,你们了解到哪些信息呢?A牌彩电是市场上最畅销的彩电吗?

  根据提出的'问题,让同学在小组内交流、讨论。同学可能会发生两种不同的看法:一局部会认为A品牌最畅销,而另一局部则认为A品牌不是最畅销的,从而引起认知抵触。

  2、引导释疑。

  在同学讨论交流的基础上,教师提问:请大家仔细观察,说说统计图里“其他”局部可能包括了哪些信息呢?

  可让同学分别说说“其他”的具体含义,从而明确“其他”里面可能含有比A牌更畅销的彩电品牌。

  3、小结。

  这幅统计图提供的数据比较模糊,不够完整,我们无法得到有关彩电市场占有率的完整信息,所以从本统计图中不能得出A牌彩电最畅销这样的结论。

  引导同学认识到:在利用统计图作判断和决策时,一定要仔细观察,注意从统计图提供的数据信息动身,不要单凭直观感受轻易下结论。

【六年级数学教案】相关文章:

六年级数学教案12-14

六年级下册数学教案11-11

六年级下册数学教案11-07

六年级上册数学教案11-09

小学六年级数学教案11-16

人教版六年级数学教案12-08

人教版六年级下册数学教案11-28

人教版六年级上册数学教案12-17

六年级数学教案精选15篇03-11

六年级数学教案《圆的周长》12-17