小学数学教案锦集(4篇)
作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么你有了解过教案吗?以下是小编帮大家整理的小学数学教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学教案 篇1
教材分析:
有余数的除法是表内除法知识的延伸和拓展,在教材内容的安排上,注重结合具体的情境,将有余数的除法的意义内容置于实际生活的背景之下,加强对有余数的除法的'认识。
学情分析:
有余数的除法是以表内除法知识作为基础来进行学习的,学生虽然在实际生活中有一些感性的认识和经验,但是缺乏清晰的认识和数学思考过程。
教学目标:
1. 通过设计情境和动手操作,让学生感知理解有余数除法的意义。
2. 通过自主探究,明确余数一定比除数小。
3.让学生在自主探究、合作交流中,经历发现知识的过程。
教学重点:
理解余数及有余数除法的含义,探索并发现余数和除数的关系。
教学难点:
理解余数要比除数小的道理。
教学过程:
一、激趣导入
(约3分钟)
今天的草莓特别新鲜,我买了一些准备分给大家。你认为怎样分才是最公平的呢?什么是平均分?
二、自主学习
(约7分钟)
1.6个草莓,每人分2个,可以分给几人?谁来分一分?
2.怎样列算式?
3.如果不是6个草莓,而是7个草莓,每2个摆一盘,谁来分一分?怎样列式?
4.7个草莓,每人分2个不能正好分完,最多只能分给3人,这余下的1个又不够再分给一人,剩下的这个数在数学上就叫余数,它表示平均分完之后剩余的数。
5.带有余数,我们就叫它有余数的除法。这节课我们学习的就是《有余数的除法》。
三、合作交流
(约10分钟)
1. 如果每人分4个草莓,8个草莓,9个草莓?10个草莓?11个草莓?12个草莓?分别可以分给几人?你们会分吗?有没有信心?好,现在咱们就拿起手中的学具代替草莓分一分。
2.生动手分。
3.以小组为单位交流、讲评。
4. 你能将下面5个算式分类吗?
84=2 (人)
94=2(人)1(个)
104=2(人)2(个)
124=3 (人)
114=2(人)3(个)
5.观察每道题的余数和除数,你发现了什么?
四、精讲点拨
(约8分钟)
1.为了分清余数和商,我们要在余数和商中间用6个小圆点隔开,我们把这样的除法,叫做有余数除法。
2.余数一定要比除数小。
五、测评总结(约12分钟)
1.达标练习
(1)完成课后做一做。
学生尝试解答,教师巡视了解情况,最后组织学生交流汇报。
(2)练习十四第1题。
(3)( )6 = 5 ( )
2.全课总结
通过今天的学习,你们有什么收获?
3.作业布置
练习十四第2题。
板书设计:
认识有余数的除法
没有余数 有余数
62=3(人) 72=3(人)1(个)
陈娅《认识有余数的除法》教案
余数
读作:7除以2等于3余1
84=2 (人) 94=2(人)1(个)
124=3 (人) 104=2(人)2(个)
114=2(人)3(个)
小学数学教案 篇2
教学目标
1.使学生进一步掌握列含有未知数 的等式解答应用题的方法.
2.进一步掌握列含有未知数 解应用题的书写格式和步骤.
3.提高学生分析推理能力.
教学重点
分析数量关系
教学难点
找出等量关系
教学过程
一、复习
(1) 求未知数 (要求口述口算过程,并说出根据)
+40=56 -47=28 +25=42
-24=36 +18=60 -33=12
(2)板演(与口算同步进行)
农场养肉牛94头,养奶牛78头,养的肉牛比奶牛多多少头?
订正板演时强调数量关系(肉牛头数-奶牛头数=肉牛比奶牛多的头数)
二、讲授新课
教师谈话:今天我们继续学习列含有未知数 的等式解答应用题的方法
(板书课题:列含有未知数 的等式解应用题)
1.教学例8
农场养的肉牛比奶牛多16头.肉牛有94头,奶牛有多少头?
(1)用以前方法解答
94-16=78(头)
明确数量关系:肉牛的头数-肉牛比奶牛多的头数=奶牛的头数
(2)用含有未知数 的.等式解答,引导学生思考:
①设谁为 ?
题中求奶牛有多少头,应设奶牛有 头.
教师板书:设奶牛有 头.
②组织学生讨论题中的数量关系
(教师板书)使学生明确:
A:奶牛的头数+肉牛比奶牛多的头数=肉牛的头数
B:肉牛的头数-奶牛的头数=肉牛比奶牛多的头数
③列式解答(根据不同的数量关系列式解答)
教师板书 A : +16=94 B:94-=16
=94-16 =94-16
=78 =78
(一个加数=和-另一个加数) (减数=被减数-差)
答:奶牛有78头.
(3)比较列含有未知数 的等式解答应用题与以前解答应用题的方法
①要设所求的未知数为 .
②未知数 和已知数放在一起参加运算.
③解出的未知数 所代表的数不写单位名称.
(4)练习
图书馆借出科技书35本,借出的科技书比借出的故事书少18本.借出故事书多少本?
三、巩固练习
1.选择正确的算式.
(1)某班女生比男生多4人.女生有27人,男生有多少人?
A.27- =4 B. +4=27
C.27+4= D. -4=27 E.27-4
(2)山坡上栽满了松树和柏树.松树有250棵,比柏树多120棵.柏树有多少棵?
A. B. C.
D. E. F.
2.找出题中的等量关系.
(1)小明有连环画38本,小林比小明少13本,小林有多少本?
(2)中央广播电视塔总高405米,比北京国际饭店高出301米,北京国际饭店的高度是多少米?
3.一题多解
(1)工厂运来一批煤,烧了28吨,还剩13吨,这批煤有多少吨?
(2)四季香果园采用科学管理后,去年收的苹果比前年多16吨.去年收苹果84吨,前年收了多少吨?
四、课堂小结
今天你学会了哪些知识?列含有未知数 的等式解答应用题与以前解答应用题的方法有什么区别?
五、课后作业
1.工厂运来一批煤,烧了28吨,还剩13吨,这批煤有多少吨?
2.四季香果园采用科学管理后,去年收的苹果比前年多16吨.去年收苹果84吨,前年收了多少吨?(用两种方法解答.)
3.红星小学歌舞队原有37人,这学期又收了一些新队员,现在有45人.这学期收了多少人?
小学数学教案 篇3
本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。
第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。
第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。
教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。
第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。
一、 一题两解既含运算顺序,又含运算律的内容。
例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。
在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。
比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如1/41/39/10,交叉约分时应用了乘法结合律,只是没有写出1/4(1/39/10);又如2/31/53/4,约分时应用了乘法交换律,只是2/33/41/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。
应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6/57/6-1/56/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的'必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。
二、 数形结合教学较复杂问题的数量关系。
例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式45-455/9;也可以根据女运动员人数占运动员总人数的(1-5/9)列出算式45(1-5/9)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。
两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。
练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式5/81/4在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。
小学数学教案 篇4
教学内容:
教材第122、123页的内容及第124、125页练习二十四的第1-3题。
教学目标:
1、使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3、体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。
重点难点:
1、重点:理解众数的含义,会求一组数据的众数。
2、弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。
教具准备:
投影。
教学过程:
一、导入
提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。
二、教学实施
1、出示教材第122页的`例1。
提问:你认为参赛队员身高是多少比较合适?
学生分组进行讨论,然后派代表发言,进行汇报。
学生会出现以下几种结论:
(1)算出平均数是1.475,认为身高接近1.475m的比较合适。
(2)算出这组数据的中位数是1.485,身高接近1.485m比较合适。
(3)身高是1.52m的人最多,所以身高是1.52m左右比较合适。
2、老师指出:上面这组数据中,1.52出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。
3、提问:平均数、中位数和众数有什么联系与区别?
学生比较,并用自己的语言进行概括,交流。
老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。
4、指导学生完成教材第123页的“做一做”。
学生独立完成,并结合生活经验谈一谈自己的建议。
5、完成教材第124页练习二十四的第1、2、3题。
学生独立计算平均数、中位数和众数,集体交流。
三、思维训练
小军对居民楼中8户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。
(1)计算出8户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)
(2)根据他们使用塑料袋数量的情况,对楼中居民(共72户)一个月内使用塑料袋的数量作出预测。
【小学数学教案】相关文章:
小学数学教案08-31
小学数学教案【经典】08-03
(精选)小学数学教案08-11
小学数学教案(精选)08-07
(经典)小学数学教案08-09
(精选)小学数学教案08-09
小学数学教案[经典]07-24
小学数学教案(经典)07-22
小学数学教案03-27
[精选]小学数学教案08-20