范文资料网>反思报告>教案大全>《分数的基本性质教案

分数的基本性质教案

时间:2023-05-13 16:30:02 教案大全 我要投稿

分数的基本性质教案模板锦集七篇

  作为一位优秀的人民教师,就有可能用到教案,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?以下是小编收集整理的分数的基本性质教案7篇,仅供参考,希望能够帮助到大家。

分数的基本性质教案模板锦集七篇

分数的基本性质教案 篇1

  教学目标 :

  1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2、理解和掌握分数的基本性质。

  3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>

  4、较好实现知识教育与思想教育的有效结合。

  教学重点 :理解和掌握分数的基本性质。

  教学难点 :能熟练、灵活地运用分数的基本性质。

  教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。

  教学过程:

  一、巧设伏笔、导入新课。

  1、出示课件:120÷30的商是多少?

  被除数和除都扩大3倍,商是多少?

  被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)

  2、在下面□里填上合适的数。

  1÷2=(1×5)÷(2×□)

  =(1÷□)÷(2÷4)

  ①想一想,你是根据什么填上面的数的?(生口答)

  (课件:商不变的`性质)

  ②商不变的性质是什么?(生口答)

  ③除法与分数之间有什么关系?

  生答,师板书:被除数÷除数=被除数/除数

  二、讨论探究,学习新知。

  1、课件出示:1÷2= (怎么写)

  ①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?

  让生合作探讨。

  ②生出示答案:1/2=2/4=4/8……

  有选择填入上数。

  2、引导学生证明它们相等。

  ①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。

  (课件演示)

  上述演示让学生感知后,问你发现了什么?(生讨论)

  ②再逆向思考,观察板书和课件。

  问你又发现了什么?(生讨论)

  得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。

  3、验证、补充、强调

  ①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。

  ②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。

  ③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。

  ④归纳出上述板书为“分数的基本性质”(课题)。

  4、信息反馈、纠正、巩固。

  ①判断(出示课件)

  A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。

  B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

  C、3/4的分子乘上3,分母除以3,分数的大小不变。

  D、10/24=10÷2/24÷2=10×3/24×3 ( )

  完成后,强调重点,加以巩固。

  ②完成课本108页例2(学生尝试练习)

  强调运用了什么性质?课件:“分数的基本性质”醒目强调。

  三、实践练习,信息综合

  1、练一练

  ①3/5=3×( )/5×( )=9/( )

  ②7/8=( )/48

  ③4÷18=( )/( )=4×5/18×( )=2/( )

  2、练习二十二1—3题。

  四、课堂总结、整体感知。

  (在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?

  五、发散巩固、自主选择。

  想一想:(选择一道你喜欢的题做)

  课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。

  ②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗

分数的基本性质教案 篇2

  教学目标:1,使同学理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2,培养同学发现问题和解决问题的能力。渗透"事物之间是相互联系"的辩证唯物主义观点。

  教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的问题。

  教学难点:理解分数的基本的性质。

  教学课型:新授课

  具准备:课件

  教学过程:

  一,复习铺垫,准备迁移 [课件1]

  1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少被除数和除数都缩小10倍呢

  2,比较下列每组数的大小。

  3/4( )3/5 15/20( )4/20

  3,把下面的分数改写成两个数相除的形式。

  2/3=( )÷( ) 5/8=( )÷( )

  二,探索新知,发展智能

  1,同学操作:将手中的纸圆片平均分成若干份。

  2,反馈。

  (1)提问:A,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几

  B,虽然每个同学所剪的份数不同,但它们之间大小关系怎样

  板书: 1/2=2/4=3/6

  C,观察一下:这些分数的分子,分母变化有什么规律

  (2)引导同学概括出分数的基本性质,并与前面的猜测相回应。

  (3)小结:这里的"相同的数",是不是任何数都可以呢

  (零除外)

  板书:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

  3,分数的基本性质与商不变的性质的比较。

  提问:在除法里有商不变的性质,在分数里有分数的.基本性质。想一想:根据分数与除法的关系以和整数除法中商不变的性质,你能说明分数的基本性质吗

  4,巩固认识。

  P109 。1

  (2)说数接龙。

  5/6=5+5/( )……

  三,运用延伸,深化概念

  1,要求大小不变。[课件2]

  1/3=( )/6 10/15=( )/6 1/4=5/( )

  2,下面分数中哪两个分数相等 [课件3]

  3/4 21/32 15/20 1/5 4/20

  习后提问:A,依据是什么

  B,3/4和1/5哪个大 你是怎么比较出来的

  C,那么,从中你又有什么新发现 你的新发现是什么

  四,全课总结

  提问: A,这节课你学习了什么

  B,运用分数的性质,你能做什么

  C,本节课你还有哪些疑问 你还想从哪些方面去探索分数

  的知识呢

  五,家作

  P109 。3,5,6

  板书设计: 分数的基本性质

  1/2=2/4=3/6

  分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇3

  教学前的思考:

  一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。

  二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。

  三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。

  教学设计:

  一 故事提供“猜想”素材:Flash动画故事引入.(教师出示课件)

  师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?

  生:高兴!

  师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)

  师:(欣赏后)同学们,你知道哪个和尚吃的多吗?

  生1:胖和尚吃的多。

  生2:矮和尚吃的多。

  ……

  师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案.(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)

  二 用事实“验证”,完整性质。

  1.实际操作列等式证实分数大小相等。

  师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  (教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)

  师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?

  生:阴影部分的大小相等。

  师:阴影部分相等说明这三个分数怎样?

  生:三个分数相等。

  (随着学生的回答,老师将板书的三个分数用“=”连接。)

  2.观察课件证实分数大小相等。

  师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?

  师:这三个分数所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接。)

  3.初步概括分数基本性质.

  师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?

  生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)

  师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?

  (教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

  师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)

  生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)

  师:你们观察的真仔细!请大家给点掌声好吗?

  (学生掌声起,激情高长,课堂教学充满活力。)

  师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

  师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?

  (小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)

  4、完整分数基本性质:

  师:(出示课件)请同学们填空:

  (教师请一位会操作鼠标的同学在课件中填空)

  师:第3题( )里可以填多少个数?第4题呢?

  生:可以填无数个。

  师:( )里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)

  生:不能填零。

  师:为什么不能填零?

  生:分数的分母不能为零。

  (教师对学生的回答进行评价)

  师:所以我们总结的这条规律必须加上一个条件“零除外”

  (教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)

  师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)

  三 深入理解分数基本性质

  1.学生自学,深入理解性质。

  师:请同学们把书翻到108页,自读分数的基本性质。

  师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?

  生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)

  2.学生独立完成做一做1。(完成后小组内互相评价)

  3.找出与

  相等的分数:

  (教师出示课件,请一位同学在课件中连线,教师进行评价)

  4.请同学们自学并完成例2、(教师巡视,个别进行辅导)

  ……

  四 照应Flash动画故事,渗透“形式与实质”的'辩证观点

  教师在黑板上出示自制的三个同样大小的圆饼

  师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)

  生:三个和沿吃的一样多。

  师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。

  ……

  五 课堂小结:这节课你有什么收获?(学生板书课题)

  教学后的感悟:

  1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

  2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。

  3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。

分数的基本性质教案 篇4

  设计说明

  1.注重情境创设,激发学生的学习兴趣。

  伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

  2.突出学生的主体地位,在实践操作中掌握新知。

  学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

  课前准备

  教师准备 PPT课件

  学生准备 若干张同样大小的圆形纸片 彩笔

  教学过程

  ⊙故事引入

  1.教师讲故事。

  师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

  大毛、二毛、三毛都满意地笑了,妈妈也笑了。

  设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

  2.探究验证。

  (1)提出猜想。

  师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

  生:同样多。

  师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

  (2)验证猜想。

  请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

  ①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

  ②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

  ③剪一剪:把圆形纸片中的涂色部分剪下来。

  ④比一比:把剪下的涂色部分重叠,比一比。

  师:通过比较,结果是怎样的?

  生:同样大。

  设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

  3.揭示课题。

  师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

  ⊙探究新知

  1.观察比较,探究规律。

  (1)请同学们观察,比较三个分数的大小。

  师:三兄弟分得的`饼同样多,那么这三个分数的大小是怎样的呢?(相等)

  师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

  (2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

  师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

  (课件出示:比较它们的分子和分母)

  ①从左往右看,是按照什么规律变化的?

  ②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

  师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

  师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

  师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

  师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

  (3)教师总结分数的基本性质。(板书)

分数的基本性质教案 篇5

  一、 教材

  根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:

  1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。

  3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:

  一是基于对课程标准的理解。

  《义务教育数学课程标准(20xx年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。

  二是基于对教材的认识。

  《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

  三是基于对学情的认识。

  作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。

  据此,

  我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。

  二、教法

  课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。

  三、说学法

  学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。

  四、说教学过程

  本着让学生

  “主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。

  环节一:联系旧知,质疑引思。

  “疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。

  环节二:操作体验,概括规律

  1.观察发现,提出猜想。

  通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想

  2.举例操作,验证猜想。

  课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的.大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。

  3.概括性质,深化理解

  通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。

  4.运用规律,完成例2

  尝试运用发现的规律,解决问题。

  环节三:知识应用,巩固提高

  在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。

  环节四:回顾总结,完善认知

  通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。

  有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。

分数的基本性质教案 篇6

  教学内容:教科书第60~61页,例1、例2、

  练一练,练习十一第1~3题。

  教学目标:

  1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

  2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

  教学重点:让学生在探索中理解分数的基本性质。

  教学过程:

  一、导入新课

  1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

  2、出示例1图。

  你能看图写出哪些分数?你是怎样想的?说出自己的想法。

  二、教学新课

  1、教学例1。

  (1)这四个分数,为什么分母不同呢?前两个分数的.分子为什么都是1?

  (2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

  (3)演示验证。

  2、教学例2。

  (1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

  (2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

  (3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

  (4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

  (5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

  (6)为什么要“0”除外呢?

  (7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

  (8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

  3、完成练一练。

  (1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

  (2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

  三、巩固练习

  1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

  2、完成第2题。独立完成,交流想法。

  四、课题总结

  今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

分数的基本性质教案 篇7

  内容:P15、16例1、2 ,练习四第1-3题。

  目标:

  1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

  2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  重点:正确理解与分析运用分数的基本性质。

  过程:

  一、创设情境,导入新课。

  “大圣”分桃:

  话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的'四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?

  二、师生共研、发现规律。

  师生共同揭秘“分桃”内幕。

  人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

  1÷2=1/2=2/4=4/8

  从上面这三个分数的相等关系,你发现了什么?

  从左往右看:

  1/2 = 1×2 / 2×2 = 2/4

  从右往左看:

  2/4 = 2÷2 / 4÷2 = 1/2

  1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

  观察分子、分母的变化,同时归纳小结。

  学生试,验证自己提出的观点是否正确。

  小结:

  分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

  三、数学小报,再次验证。

  1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

  2.将折得的小报中数学趣题版用阴影显示出来。

  3.将四张的折叠结果重叠,得出数学趣题版面大小。

  4.针对式子进行口头表述。

  四、理解性质、简单运用。

  例2的教学

  (1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

  请同学们理清题意,然后进行转化。

  (2)反馈。

  (3)质疑

  让学生通过讨论,深化对分数大小不变的要求的理解。

  (4)议一议

  由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

  五、练习巩固、拓展提高。

  1.课堂活动

  2.提取第一题的结果,进行深入思考:

  当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?

  结论:大小不变,分数单位要变。

  六、全课总结:

  这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?

  七、作业:

  练习四第1-3题。

【分数的基本性质教案】相关文章:

《分数的基本性质》教案09-10

分数的基本性质的教案02-26

分数的基本性质教案03-21

人教版《分数基本性质》教案02-27

分数的基本性质教案3篇07-10

分数的基本性质教案模板9篇10-16

分数的基本性质教案模板九篇10-18

分数的基本性质教案汇编7篇10-18

【必备】分数的基本性质教案四篇10-27

分数的基本性质教案模板八篇10-31