范文资料网>反思报告>教案大全>《分数的基本性质教案

分数的基本性质教案

时间:2023-05-08 15:54:35 教案大全 我要投稿

分数的基本性质教案模板汇总十篇

  作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,借助教案可以有效提升自己的教学能力。教案应该怎么写呢?下面是小编整理的分数的基本性质教案10篇,欢迎阅读与收藏。

分数的基本性质教案模板汇总十篇

分数的基本性质教案 篇1

  教学目的:

  1、理解分数的基本性质;

  2、初步掌握分数性质的应用;

  3、培养学生观察——探索——抽象——概括的能力;

  4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

  教学重点:

  从相等的分数中看出变与不变,观察、发现、概括其中的规律。

  教学难点:

  形成对分数的基本性质的统一认知。

  教学准备:多媒体,自制演示教具。

  教学过程:

  一、激趣引新:

  1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

  2、在下面的()中填上合适的数。

  1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

  同学们现在已经能用分数的知识来解决问题了。

  二、启发引导,探索新知。

  1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

  通过图形的平移、旋转等方法看出三个班种植面积一样大。

  2.引导观察得出结论。

  (1)通过拼图得到1/2=2/4=4/8

  (2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

  (3)引导思考探索变化规律:

  从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

  反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  3.共同讨论,引导学生抽象概括出分数的基本性质:

  (1)怎么做能使分数的'分子和分母发生变化,而分数的大小都不变呢?

  (2)变化时同时乘或除以小数可以吗?

  (3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

  归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

  4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

  (1)练习在□中填上合适的数

  1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

  (2)你能把1÷2这个除法算式改写成分数形式?

  你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

  5.组织练习

  (1)判断:

  1/5=1/5×3=1/5()

  5/6=5×2/6×3=10/18()

  8/12=8×4/12÷4=32/3()

  2/5=2+2/5+2=4/7()

  3/4=3÷0.5/4÷0.5()

  分数的分子和分母都乘或除以相同的数,分数的大小不变。()

  (2)画一画、填一填

  (3)填空

  1/2=1×()/2×()=6/()

  10/24=10○()/24○()=()/12

  15/60=()/203/()=9/12

  6/18=()/()=()/()(有多少种填法)

  6.通过练习在此性质中哪些是关键词?

  7.巩固练习(选择你喜欢的一题来做)

  (1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

  (2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

  三、课堂总结

  今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

  四、课堂作业:练习十四第1——3题。

  板书设计:

  分数的基本性质

  1/2=1×2/2×2=2/4=2×2/4×2=4/8

  分数的分子和分母同时乘以一个不为0的数分数的大小不变

  4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  分数的分子和分母同时除以一个不为0的数分数的大小不变

  综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇2

  教学目标:

  1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2.理解和掌握分数的基本性质。

  3.较好的实现知识教育与思想教育的有效结合。

  教学重点:

  理解和掌握分数的基本性质。

  教学难点:

  能熟练、灵活地运用分数的基本性质。

  教学过程:

  一、创设情景

  师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?

  师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

  二、新授

  师:同学们想了很多好的方法,哪个小组愿意汇报一下?

  生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以

  生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的.纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)

  师:我们发现的这个规律,就是分数的基本性质。

  同学们现在小组内总结一下,什么是分数的基本性质?

  (学生认真讨论)

  师:同学们汇报一下你们的讨论结果。

  三、 自主练习 巩固提高

  课本第80页1、2、3、题。

  其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

  第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。

  课堂小结 :

  一生小结,他生补充,教师评判。

分数的基本性质教案 篇3

  内容:P15、16例1、2 ,练习四第1-3题。

  目标:

  1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

  2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  重点:正确理解与分析运用分数的基本性质。

  过程:

  一、创设情境,导入新课。

  “大圣”分桃:

  话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?

  二、师生共研、发现规律。

  师生共同揭秘“分桃”内幕。

  人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

  1÷2=1/2=2/4=4/8

  从上面这三个分数的相等关系,你发现了什么?

  从左往右看:

  1/2 = 1×2 / 2×2 = 2/4

  从右往左看:

  2/4 = 2÷2 / 4÷2 = 1/2

  1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

  观察分子、分母的变化,同时归纳小结。

  学生试,验证自己提出的观点是否正确。

  小结:

  分数的分子和分母同时乘上或者除以相同的'数(零除外)分数的大小不变。

  三、数学小报,再次验证。

  1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

  2.将折得的小报中数学趣题版用阴影显示出来。

  3.将四张的折叠结果重叠,得出数学趣题版面大小。

  4.针对式子进行口头表述。

  四、理解性质、简单运用。

  例2的教学

  (1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

  请同学们理清题意,然后进行转化。

  (2)反馈。

  (3)质疑

  让学生通过讨论,深化对分数大小不变的要求的理解。

  (4)议一议

  由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

  五、练习巩固、拓展提高。

  1.课堂活动

  2.提取第一题的结果,进行深入思考:

  当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?

  结论:大小不变,分数单位要变。

  六、全课总结:

  这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?

  七、作业:

  练习四第1-3题。

分数的基本性质教案 篇4

  教学目标

  1、进一步理解分数基本性质的意义,掌握约分的方法。

  2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。

  教学重难点约成最简分数

  教学准备:分数卡片口算卡片

  教学过程

  一、自主回顾

  回顾一下对约分的理解情况

  突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。

  师:什么是最简分数?

  说一说。

  二、巩固练习

  师分数卡片判断

  1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)

  你是怎样寻到的?说说自己的理由好么?

  2、能用不同的分数表示下面各题的商吗?

  练习十一第8题

  师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的`进步啊,这就是学习的魅力。

  师:你能写出不同的除法算式吗?

  =()÷()=()÷()

  你能说出几个除法的算式?

  这些算式之间有什么联系?

  3、快乐学习超市

  超市画面快乐套餐1快乐套餐2

  快乐套餐1:比一比○○0.4

  计算并化简+=-=

  在()填上最简分数20分=()时

  快乐套餐2、3同上。

  (分组练习小组代表汇报整合了练习十一10至14题)

  4、集中练习

  把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?

  分母是10的最简分数有几个?

  请你提出一个类似的问题。

  课堂作业

  练习十一第9题,12、13、14题各自选2个

  课后练习:完成练习册上的相应练习。

分数的基本性质教案 篇5

  教材简析:

  分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

  设计理念:

  分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。

  在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的`性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。

  《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。

  教学目标:

  1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.

  2、培养学生观察、分析、思考和抽象、概括的能力.

  3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.

  教学重点:

  使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。

  教学难点:

  让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教具准备:

  每生三张正方形纸

  教学方法:

  演示法、观察法、讨论法、交流法。

分数的基本性质教案 篇6

  教学目标:

  1、理解分数的基本性质。

  2、初步掌握分数的基本性质。

  3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。

  教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。

  设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。

  在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。

  通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。

  第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。

  教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的`大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) = = = =

  从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。

  请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习

  (用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)

  3、请找我的好朋友练习。(以游戏的形式来进行)

  要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。

  ( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)

  4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

  (这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)

  5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。

分数的基本性质教案 篇7

  教学目标:1,使同学理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2,培养同学发现问题和解决问题的能力。渗透"事物之间是相互联系"的辩证唯物主义观点。

  教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的问题。

  教学难点:理解分数的`基本的性质。

  教学课型:新授课

  具准备:课件

  教学过程:

  一,复习铺垫,准备迁移 [课件1]

  1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少被除数和除数都缩小10倍呢

  2,比较下列每组数的大小。

  3/4( )3/5 15/20( )4/20

  3,把下面的分数改写成两个数相除的形式。

  2/3=( )÷( ) 5/8=( )÷( )

  二,探索新知,发展智能

  1,同学操作:将手中的纸圆片平均分成若干份。

  2,反馈。

  (1)提问:A,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几

  B,虽然每个同学所剪的份数不同,但它们之间大小关系怎样

  板书: 1/2=2/4=3/6

  C,观察一下:这些分数的分子,分母变化有什么规律

  (2)引导同学概括出分数的基本性质,并与前面的猜测相回应。

  (3)小结:这里的"相同的数",是不是任何数都可以呢

  (零除外)

  板书:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

  3,分数的基本性质与商不变的性质的比较。

  提问:在除法里有商不变的性质,在分数里有分数的基本性质。想一想:根据分数与除法的关系以和整数除法中商不变的性质,你能说明分数的基本性质吗

  4,巩固认识。

  P109 。1

  (2)说数接龙。

  5/6=5+5/( )……

  三,运用延伸,深化概念

  1,要求大小不变。[课件2]

  1/3=( )/6 10/15=( )/6 1/4=5/( )

  2,下面分数中哪两个分数相等 [课件3]

  3/4 21/32 15/20 1/5 4/20

  习后提问:A,依据是什么

  B,3/4和1/5哪个大 你是怎么比较出来的

  C,那么,从中你又有什么新发现 你的新发现是什么

  四,全课总结

  提问: A,这节课你学习了什么

  B,运用分数的性质,你能做什么

  C,本节课你还有哪些疑问 你还想从哪些方面去探索分数

  的知识呢

  五,家作

  P109 。3,5,6

  板书设计: 分数的基本性质

  1/2=2/4=3/6

  分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇8

  设计说明

  1.注重情境创设,激发学生的学习兴趣。

  伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

  2.突出学生的主体地位,在实践操作中掌握新知。

  学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

  课前准备

  教师准备 PPT课件

  学生准备 若干张同样大小的圆形纸片 彩笔

  教学过程

  ⊙故事引入

  1.教师讲故事。

  师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

  大毛、二毛、三毛都满意地笑了,妈妈也笑了。

  设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

  2.探究验证。

  (1)提出猜想。

  师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

  生:同样多。

  师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

  (2)验证猜想。

  请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

  ①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

  ②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

  ③剪一剪:把圆形纸片中的涂色部分剪下来。

  ④比一比:把剪下的涂色部分重叠,比一比。

  师:通过比较,结果是怎样的?

  生:同样大。

  设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

  3.揭示课题。

  师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

  ⊙探究新知

  1.观察比较,探究规律。

  (1)请同学们观察,比较三个分数的大小。

  师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

  师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的`一半。

  (2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

  师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

  (课件出示:比较它们的分子和分母)

  ①从左往右看,是按照什么规律变化的?

  ②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

  师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

  师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

  师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

  师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

  (3)教师总结分数的基本性质。(板书)

分数的基本性质教案 篇9

  教学内容:省编义务教材第十册第91—93页例1、例2。

  教学目标:

  1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

  2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

  3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

  课前准备:

  课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

  教学过程:

  1.创设情境,作好铺垫

  出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

  为什么你会猜是一道除法算式?(分数与除法有密切的关系)

  除法与分数有什么样的关系?

  (黑板上出示:被除数÷除数=)

  根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

  为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

  什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

  2、迁移猜想,引疑激思

  分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

  交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  3、自主探究,验证猜想

  也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

  (1)初步验证

  ①出示:探究报告单,让学生读要求:

  a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

  b.选择合理的'方法验证所前后两个分数是否相等。

  c.填写好探究报告单。

  选择探究的

  分 数

  分子和分母同时乘以或除以

  一个相同的数

  得到的

  分 数

  选择的分数与得到的分数是否相等

  相等( ) 不相等( )

  猜想是否成立

  成立( ) 不成立( )

  选择的分数与得到的分数是否相等相等()不相等()

  猜想是否成立成立()不成立()

  *:验证方法可用折纸、画线段图、计算、实物……

  ②学生合作进行探究。

  ③全班交流:

  a、同桌一起上来,拿好探究报告单及验证材料等。

  b、两人合作,一人讲解、一人验证演示。

  c、得到结论:

  (交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

  刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

  4、议论争辩,顿悟创新

  读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

  5、训练技能,激励发展

  刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

  (1)练习明目的

  根据分数的基本性质,填空。

  1/2=()/8=5/()=()/6=7/()

  采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

  (2)慧眼辩是非

  (3)变式练思维

  把下面每组中的异分母分数化成同分母分数。

  A、3/4,4/7B、5/6,4/9C、3/5,5/8

  分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

  (4)竞赛促智慧

  ①在1—9九个数字中任选一些数字组成大小相等的分数。

  可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。

  并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

  ②出示:1/a=7/b(说明:a、b都不是0。)

  抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

  连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

  讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

  6、回顾,掌握方法

  今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

  学生可能会回答:

  生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

  生2:我们是通过猜测的方法学的。

  生3:我们还用验证的方法学习。

  ……

  结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

分数的基本性质教案 篇10

  教学内容:

  人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。

  设计思路:

  《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

  教学目标:

  1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。

  教学重点:

  理解和掌握分数的基本性质。

  教学难点:

  应用分数的基本性质解决实际问题。

  教学方法:

  直观演示法、讨论法等。

  学法:

  合作交流、自主探究。

  教学准备:

  每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。

  教学过程:

  一.创设情景,激发兴趣

  (课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?

  ( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )

  二.大胆猜想,揭示课题

  学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?

  随着学生的回答,教师板书课题:分数的基本性质。

  三 .探索研究,验证猜想

  1. 动手操作,验证性质。

  (1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12

  份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?

  (2)小组合作:①观察、分析、比较在组内交流你的发现。

  ②合作交流,各抒己见。

  123③选代表全班汇报、交流,师相机板书:4812

  123(3)合作讨论: 为什么相等? 4812

  ①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的.变化规律,在组内用自己的话说一说。

  2.分组汇报,归纳性质。

  a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

  (根据学生回答

  b.从右往左看,分数的分子和分母又是按照什么规律变化的?

  (根据学生的回答)

  c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?

  d.综合刚才的探究,你发现什么规律?

  (4)引导学生概括出分数的基本性质,回应猜想。

  对这句话你还有什么要补充的?(补充“零除外”)

  讨论:为什么性质中要规定“零除外”?

  (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

  师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

  3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)

  33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212

  的大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)

  分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x

  四.回归书本,探源获知

  1.浏览课本第75—78页的内容。

  2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)

  3.分数的基本性质与商不变性质的比较。

  (1)小组合作:讨论分数的基本性质与商不变性质的异同。

  (2)小组内交流。

  (3)选代表全班交流、汇报。

  (4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!

  4.自主学习并完成例2,请二名学生说出思路。

  五.巩固深化,拓展思维(PPT演示文稿出示下列题目)

  1.想一想,填一填。

  33×( )988÷( )() 55×( )( )2424÷( )3

  学生口答后,要求说出是怎样想的?

  2.在下面( )内填上合适的数。

  要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

  3.思维训练(选择你喜爱的一道题完成)

  3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5

  (2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?

  讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

  (3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。

  思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

  六.全课小结

  本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)

  七.布置作业

  P77—78练习十四第1、5、8题。

  教学反思

  “分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

  本节课教学设计突出的特点是学法的设计。从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。通过教学总结了自己的得与失如下:

  1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。因为兴趣是最好的老师!

  2.学生在操作中大胆猜想。

  新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。教师在教学过程成为学生学习的引导者、支持者、服务者。同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。

  3.学生在自主探索中科学验证。

【分数的基本性质教案】相关文章:

《分数的基本性质》教案09-10

分数的基本性质的教案02-26

分数的基本性质教案03-21

人教版《分数基本性质》教案02-27

分数的基本性质教案3篇07-10

分数的基本性质教案模板9篇10-16

分数的基本性质教案模板九篇10-18

分数的基本性质教案汇编7篇10-18

【必备】分数的基本性质教案四篇10-27

分数的基本性质教案模板八篇10-31