可能性教案

时间:2023-05-02 15:22:38 教案大全 我要投稿

关于可能性教案模板汇编6篇

  作为一名教学工作者,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。那么教案应该怎么写才合适呢?下面是小编精心整理的可能性教案6篇,希望对大家有所帮助。

关于可能性教案模板汇编6篇

可能性教案 篇1

  【教材分析】

  (一)教学内容分析:

  可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

  教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

  (二)学情分析

  考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

  【教学目标】

  1、 了解概率的意义

  2、 了解等可能性事件的概率公式

  3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

  进一步认识游戏规则的公平性

  【教学重点、难点】

  重点:概率的意义及其表示

  难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

  【教学过程】

  (一) 创设情境,引入新知:

  引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

  分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

  解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

  (这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

  (二) 师生互动,探索新知:

  从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

  ①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

  ②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

  ③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

  接着类似的可以让学生自己结合生活经验独立举一些例子。

  (这样的安排是使学生有独立思考的空间并让学生充分发表自己的'意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

  然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

  如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

  强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

  例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

  (三) 讲解例题,综合运用:

  在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

  例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

  分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

  解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

  一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

  (例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

  从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

  (四) 练习反馈,巩固新知:

  做一做:

  1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

  (根据班级各小组的实际人数回答)

  2、 转盘上涂有红、蓝、绿、黄四种颜色,

  每种颜色的面积相同。自由转动一次转盘,

  指针落在红色 区域的概率是多少?

  指针落在红色或绿色 区域的概率是多少?

  (1/4,1/2)

  (五)变式练习,拓展应用:

  例2:如图所示的是一个红、黄两色各占

  一半的转盘,让转盘自由转动2次,指针2

  次都落在红色 区域的概率是多少?一次落在

  红色 区域,另一次落在黄色 区域的概率是多少?

  分析:

  (1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

  (2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

  (3)统计所求各个事件所包含的可能结果数。

  解:根据如图的树状图,所

  有可能性相同的结果数有4种:

  黄,黄;黄,红;红,黄;红,红。

  其中2次指针都落在红色 区域的可能结

  果只有1种,所以2次都落在红色 区域

  的概率 ;

  一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

  变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

  (本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

  (五) 反思总结,布置作业:

  引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

  五、教学说明:

  本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案 篇2

  教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。

  教学目标:

  1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。

  2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。

  3、情感目标:在活动交流中培养合作学习的意识和能力。

  教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。

  教学难点:利用可能性的知识解决实际问题。

  教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。

  教学过程:

  一、创设情境,激趣猜测

  1、听故事,激发学习兴趣

  (1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?

  (动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)

  2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?

  学生猜测:它有可能追到小兔,也有可能追不到小兔。

  师:那追到的可能性会......很小。

  3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。

  (板书课题:可能性的大小)

  实践是最好的老师,下面我们就通过摸球试验来研究,好吗?

  二、探究、验证

  1、试验准备。

  (1)介绍试验材料。

  师:每个小组准备了一个盒子,盒子里都有红球和蓝球。

  (2)说明试验要求。

  (多媒体出示小组合作要求。)

  师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题:(一)摸到哪种颜色球的可能性大?

  (二)摸到哪种颜色球的可能性小?

  (3)提出注意事项。

  师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。

  2、合作试验、初步推测。

  (1)各小组试验,教师巡视。

  (2)观察、汇报。

  师:谁把你们组的试验结果汇报一下?

  生汇报。

  3、推理、验证、归纳。

  (1)观察。

  (集中展示各小组的摸球情况统计图。)

  师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?

  生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。

  师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?

  (2)思考。

  师:这都是你们的推测,到底对不对呢?有什么方法可以知道?

  师:好!莫老师数三声,我们就一起把盒子打开。

  师:请同学们数一数,红球有几个?蓝球有几个?看了这些颜色球的数量,再联系刚才的试验结果,你知道了什么?

  (红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)

  师:也就说,在摸球试验中,可能性的大小和什么有关系呢?

  (与球的数量有关。)

  师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。

  (3)归纳。

  师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?

  三、应用、拓展

  师:其实生活中还有不少事情的出现与可能性的大少有关,你们能运用可能性知识来解决一些生活中的实际问题吗?

  1、转转盘。(课本106页的“做一做”。)

  师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?

  (生可能会选黄色)你为什么会选黄色格呢?

  (因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)

  转转试试看?

  不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)

  师:为什么只有()个同学拿到图案?

  (因为黄色格的数量少,蓝色的数量多,转到黄色的可能性小。)真聪明!那就把这张图案送给你吧?

  3、拓展。

  师:老师这里还有一个有趣的转盘(出示幸运转盘)。

  商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?

  (因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)

  师:你们能用学到的数学知识解释生活中的问题,真是棒极了!

  2、设计转盘。(练习二十第4题。)

  师:看了这个转盘,你们想不想也来设计这样有趣的转盘?

  (1)课件出示设计要求。

  请同学们在书本109页上涂一涂。

  (2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)

  问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?

  (3)。

  师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?

  4、解决问题。

  师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)

  师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)

  师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?

  (小猫扑到黄色蝴蝶的可能性大。)

  师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)

  师:看来确实是扑到黄蝴蝶的'可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?

  (天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)

  师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)

  师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?

  (因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)

  师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。

  听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)

  (师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)

  5、猜一猜。(练习二十第10题。)

  师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。

  师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有X个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?

  汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。

  师补充:虽然猜对的可能性小,但我们也是有可能猜对的。

  四、、延伸

  1、延伸。

  师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流好吗?

  2、。

  (1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?

  (3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?

  出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。

  师:看了这个故事结果后,你们有话要跟小猴子说吗?

  小朋友们,我们可不要像小猴那样三心两意哦!

  五、板书设计

  可能性大小

  数量多可能性大

  数量少可能性小

可能性教案 篇3

  一、利用的数学知识

  1.组合(两个骰子上的数字之和)

  2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数。)

  3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的。)

  二、活动步骤

  (一)示范游戏

  1.体验确定现象与不确定现象,列举所有可能的结果。

  (运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)

  2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。

  3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的.欲望。

  (二)小组内游戏,探索结论。

  通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。

  (三)理论验证

  通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。

可能性教案 篇4

  《可能性》是义务教育课程标准实验教科书(人教版)三年级上册104-105页内容。其相关知识是新课标增设的教学内容,属于统计与概率学习领域。本节课是学生首次接触有关可能性的知识,是学生对可能性的认识和理解从定性向定量的过渡。小学数学课程标准中明确指出:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。“数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……”根据这一理念,基于这样的教学内容和学生的知识基础,在设计教学时,我注重联系学生的生活经验,创设有效的教学情境,精心组织活动,为学生提供探究空间、交流平台以促进学生主动学习。

  案例描述:

  教学目标:

  1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定、可能、不可能”来描述事情发生的可能性。

  2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。

  3、激发学生学习数学的兴趣,产生积极的情感体验。

  教学重点:

  感受体验事情发生的确定性和不确定性,会判断生活中“一定、可能、不可能”发生的事情。

  教、学具:、彩球、塑料袋

  教学过程:

  一、创设情景,初步感知

  1、初步感受事情发生的确定性

  (1)用“一定”来描述事情发生的确定性。

  师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?

  生:想看。

  师:老师手里有一个魔袋(一个不透明的袋子),里面装着一些彩球,请同学们从里面任意摸出一个,我能猜出它是什么颜色的。你们相信吗?

  (学生有的说信,有的说不信)

  师:那我们就试试吧。

  (师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的球。)

  师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?

  师:当事情确定会发生时,我们可以用“一定”来描述。(板书:一定)

  把白球倒入空的.不透明的袋子中,请学生描述会摸到什么颜色的球?

  [设计意图:良好的开端是成功的一半,一开始由猜球游戏导入新课,使学生很快进入最佳学习状态,兴趣盎然、主动参与。使学生在参与猜球的过程中明白“一定”的涵义,初步体验到什么有些事件的发生是“一定”的。]

  (2)用“不可能”来描述事情发生的确定性。

  师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?

  师:确定不会发生的事情,我们就用“不可能”(板书:不可能)来描述。从这个袋中还不可能摸出什么颜色的球?

  [设计意图:在学生已经理解“一定”的基础上,自然而然地引出“不可能”发生的事情,进一步体验什么情况下事件的发生是“不可能”的。至此,学生对确定性事件已经形成了初步的认识。]

  2、初步感受事情发生的不确定性。

  (1)用“可能”来描述事情发生的不确定性。

  师:(往只装有白球的袋中倒入若干个黄球)这时,任意摸出一个球,结果怎样?

  引导:用“可能”来描述事情发生的不确定性。

  (2)加深对“可能”的理解。

  请学生从装有黄、白、红球的袋中任意摸出一个球,摸之前先猜一猜可能摸到什么颜色的球。

  [设计意图:让学生在猜测中主动参与,学会用自己的语言来描述事件发生的情况,为新知内化创造条件。]

  二、互动交流,深层体验

  1、“生本”对话,描述可能性。

  师:通过刚才的活动,我们知道,当事情确定发生时,我们可以用“一定”来描述,当事情确定不会发生时,我们可以用“不可能”来描述,当事情不确定发生时,我们可以用“可能”来描述。下面,老师给大家介绍书上的几位小朋友(出示例1的插图)请同学们仔细观察,你能用“一定”、“不可能”、“可能”对正要摸棋的小朋友说些什么吗?

  [设计意图:对话是课堂学习、交流不可缺少的,让学生和书本进行“对话”,学生觉得新颖有趣,乐于对话,敢于对话,在对话交流中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。]

  2、揭示课题

  3、学习例2,判断可能性。

  出示例2,生独立判断,交流汇报。

  [设计意图;至此,学生对本节课所学的内容已经有了一定的掌握,对于例2放手让学生独立学习,培养学生自主学习的能力。]

  三、联系生活,应用拓展

  1、“生生”对话。

  小组内活动:

  ①往袋中装球,用“一定、不可能、可能”说一句话。

  ②提出一个要求,根据要求来装球。

  小组间活动:

  小组派代表,向其它小组的同学提问题,当场解决。

  [设计意图:再次设计对话环节,小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。]

  2、辨一辨。(书本习题)

  3、涂一涂。(书本习题)

  4、用“一定、可能、不可能”举一举生活中的例子。

  [设计意图:让学生带着数学去理解生活,结合生活去体会数学的价值。]

  四、课堂总结,升华情感

  师:这节课,你学会了什么,有什么收获?觉得自己学得怎样?心情如何?

  教学反思:

  1、 较好地整好教学资源。

  这节课的教学应创设更多的情境让学生在其中体验。教科书提供了丰富的情境材料,在此基础上,我以进行了整合。如例1这之前先设计摸球、猜球的颜色等活动来初步感知事情发生的可能性。对例1也进行了改编,与书本的小朋友进行对话,进一步体验事情发生的可能性。

  2、 灵活地组织数学活动。

  “数学教学是数学活动的教学”本节课的教学按照学生的认知规律和教学内容的特殊性,灵活地组织数学活动,给学生提供较充足的活动空间,探索空间和创造空间,使学生在操作、比较、实践中认识“可能性”如课一开始的“猜一猜”活动,接下来的“摸球”活动,小组内及小组间活动等,全过程无处不是“可能性”的学习与判断,可以说活动贯穿全课,“可能性”也融贯全课。

  3、 精心设计教学对话。

  每一堂课都离不开对话,本节课的教学对话可以说是一个亮点。在教学设计时,我非常注重“对话”在教学过程中的积极作用。主要体现在以下三点。

  (1) 师生对话

  在与学生对话中,我注重用饱满热情、生动的语言,自然可亲的态度与学生进行交流互动,创设平等、**、和谐的课堂氛围,同时关注对学生表达、概括能力的培养。

  (2) 生本对话

  教学例1时,我设计了“生本”对话环节:“你能用一定、不一定、可能和书上这位正要摸球的小男孩说些什么吗?”学生对这一活动感到新颖、有趣,乐于对话,敢于对话,在对话中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。

  (3) 生生对话

  在教学完例2后,我又设计了“生生”对话环节。小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。

  反思不足之处:

  在小组间的交流活动过程中,教师过于放手,学生所提问题不能很好的围绕“可能性”来展开。好果教师事先做一定的示范、指导,再放手让学生活动,这样可增强活动的可操作性和有效性。

可能性教案 篇5

  活动一:完成调查表

  活动二:接力长跑

  活动三:有奖游戏

  教学内容:

  教材P93《铺地砖》

  教学目标:

  l.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。

  2、进一步增强估算意识,提高学生运用数学解决生活中问题的能力。

  3.培养学生用数学的意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。

  4. 体会数学与生活的联系,感受数学的作用和价值。

  教学重点:

  运用多种知识解决问题。 合理地选择所需的地砖,根据不同要求灵活解决问题。

  教学难点 :

  灵活运用面积计算的知识解决实际问题。

  教学流程与设计

  一、汇报课前调查情况,做好设计准备

  师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?

  师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)

  二、联系实际,小组讨论计算。

  1、出示卧室地面的平面图,并介绍地面的`长和宽,分别是长5米,宽4米。

  2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。

  (估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

  三、活动小结,发散联想

  师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?

  板书设计:

  估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

可能性教案 篇6

  教学目标:

  1、通过“猜测—实践—验证”,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。

  2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。

  3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。

  教学重点:

  感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的'大小规律。

  教学难点:

  通过动手操作,分析推理,得出事件发生的可能性的大小规律。

  教学过程:

  一、游戏激趣,谈话引入(飞镖)

  1、引出“可能”

  今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)

  请两个学生上来比赛,猜猜谁会赢?

  教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用“可能”来描述。(板书:可能—不确定)

  现在谁能用可能一次来说说他们两个的输赢情况。(XX可能会赢,XX可能会输,从不同角度说说)

  2、引出“不可能”、一定

  比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的输赢情况,并说说理由。从而引出“一定”、“不可能”

  (板书:(一定--确定)

  (不可能--确定)

  3、小结:刚才我们所讲到的“可能、不可能、一定”它是判断一件事情会不会发生的三种情况。其实像这样的例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用“可能、不可能、一定”来说一说。

  4、练习(课件出示)

  (1)小红说:“出生到现在我没有吃过一点东西。”

  (2)太阳从西边出来。

  (3)吃饭时,有人用左手拿筷子。

  (4)世界上每天都有人出生。

  5、教师说学生用手势进行判断。

  (1)两个因数相乘,积是两位数。

  (2)三位数除以两位数的商是两位数。

  (3)一个人身高10米。

  (4)角有一个顶点两条边。

  二、操作活动探索规律

  1、出示活动要求

  (1)每人摸3次,摸的时候要按顺序,不能抢。

  (2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。

  (3)小组长统计一共摸了几次,白棋几次,黑棋几次。

  2、小组活动,教师巡视指导

  2、汇报摸球情况

  请各组的组长汇报你们组的摸球情况。(师将学生的摸球的情况统计在记录表中)仔细地观察这个表格,你发现了什么?

  3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。

  4、验证猜测结果

  5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量

  多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的

  可能性就差不多了。

  三、生活应用

  我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。

  1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)

  (1)猜猜他们两个投在那个地方的可能性大一些

  (2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)

  2、定分

  老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?

  3、摸奖

  瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)

【可能性教案】相关文章:

可能性教案06-14

《可能性》教案02-13

认识可能性教案07-28

可能性教案15篇09-04

精选可能性教案3篇01-15

可能性教案(15篇)09-11

精选可能性教案四篇03-07

可能性教案(精选15篇)01-31

可能性教案精选15篇02-17

关于可能性教案三篇06-22