鸡兔同笼教案

时间:2023-04-21 14:08:56 教案大全 我要投稿

鸡兔同笼教案锦集7篇

  作为一位无私奉献的人民教师,就不得不需要编写教案,教案有助于学生理解并掌握系统的知识。那么什么样的教案才是好的呢?下面是小编收集整理的鸡兔同笼教案7篇,仅供参考,希望能够帮助到大家。

鸡兔同笼教案锦集7篇

鸡兔同笼教案 篇1

  教学目标:

  (一)知识技能

  1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。

  2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。

  (二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。

  (三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。

  教学重点:

  使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。

  教学难点:

  使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。

  教学过程:

  一、激趣导入 渗透方法

  1、 出示绕口令

  1只小鸡2条腿, 1只兔子4条腿;

  2只小鸡( )条腿, 2只兔子( )条腿;

  3只小鸡( )条腿, 3只兔子( )条腿。……

  【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】

  2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同

  【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】

  3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?

  老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?

  如果学生说出列表,老师先出示无序列表,再请学生帮忙修改

  【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】

  接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿

  【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】

  二、独立探究 解决问题

  刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。

  谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)

  1、出示例题,读儿歌

  菜市场里真热闹,鸡兔同笼喔喔叫。

  数数头儿有8个,数数腿儿26。可知鸡兔各多少?

  2、 指名说说已知条件和问题。

  引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿

  3、你们愿意自己尝试解答吗?

  每个同学有2个选择

  第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。

  第二:用填表的方法,看能否找到答案。

  (如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)

  【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的.问题,所以这里强调的是尝试使用直观的画图法、列表法。】

  三、小组交流 开阔思路

  小组讨论的要求是

  1、给组内同学讲一讲你解题的方法和过程。

  2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。

  【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】

  四、全班交流 成果共享

  1、画图法

  预设1:用八个圆表示鸡的头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)

  预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡

  为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?

  你认为这两种画法哪种简单?

  【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】

  2、列表法

  教师让学生在实物投影下讲解列表的方法。

  (预设3种列表法)

  3、逐一列表法

  情况1:鸡的只数 1 2 3 4 5 6 7

  兔的只数 7 6 5 4 3 2 1

  共有足数 30 28 26 24 22 20 18

  情况2

  鸡的只数 1 2 3

  兔的只数 7 6 5

  共有足数 30 28 26

  情况1与情况2进行比较

  确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

  情况3:兔的只数 1 2 3 4 5 6 7

  鸡的只数 7 6 5 4 3 2 1

  共有足数 18 20 22 24 26 28 30

  情况4:兔的只数 1 2 3 4 5

  鸡的只数 7 6 5 4 3

  共有足数 18 20 22 24 26

  情况3与情况4进行比较

  确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

  情况2与情况4进行比较

  哪个列表能快速找到答案,为什么?

  4、取中列表法

  鸡的只数 4 3

  兔的只数 4 5

  共有足数 24 26

  5、跳跃列表法

  鸡的只数 1 3

  兔的只数 7 5

  共有足数 30 26

  (如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。

  如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)

  【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】

  五、灵活运用 巩固方法

  1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。

  我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。

  出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?

  你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?

  用你刚才没有尝试过的方法解决

  2、设计意图:

  1、使学生感受我国传统的数学文化。

  2、 能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。

  3、 使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。

  【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】

  六、总结收获 畅谈体会

  通过今天的学习,你有什么收获?

鸡兔同笼教案 篇2

  教学目标

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

  3、通过本节课的`学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的结果。

  (1)、列表:

  鸡876543

  兔012345

  脚161820222426

  (2)、假设法:

  假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)4=26

  2x+84-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)4=94

  2x+354-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  235=70(只)

  94-70=24(只)

  24(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、巩固与运用

  1、完成教科书第115页做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书第115页做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

  68=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、作业

  练习二十六第一、二题。

鸡兔同笼教案 篇3

  教学目标:

  1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

  2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

  3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

  教学重点:

  能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

  教学难点:

  能用不同的策略解决相关的实际问题。

  教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。

  教具:多媒体课件

  教学过程:

  一、联系现实,激趣导入

  1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

  生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

  师:接下来的歌谣不完整,谁能把它填完整呢?

  两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…

  师:你是怎么知道的?

  生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

  [设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

  2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。

  二、自主探索,尝试解决

  1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

  (1)、指名读题

  (2)、理解题意:

  师:20个头表示什么?

  生:20个头表示鸡与兔的总头数。

  师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

  (3)、同桌说一说:

  (4)、学生汇报,教师填表

  生1:我猜鸡有3只,兔子有17只。

  生2:我猜鸡有5只,兔子有15只。

  生3:我猜鸡有16只,兔子有4只。

  ……

  师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

  生:鸡兔的总只数没有变。

  强调鸡兔的总只数不变

  [设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

  2、自主探究

  出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

  (1)、指名读题

  (2)、引导观察:

  师:这两道题有什么不同呢?

  生:第2个问题多了一个条件“54条腿”

  (3)、理解题意:

  师:20个头,54条腿是什么意思呢?

  生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

  师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

  ①、每个小组老师都有一份材料

  ②、小组长组织小组成员讨论,小组长并做好记录

  3、反馈交流,教师适当引导

  (1)、逐一列表法:

  生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

  师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

  (2)、跳跃列表法

  生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的`只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

  师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

  (3)、折中列表法

  生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

  师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

  像同学们刚才的这几种解法,我们把它称为列表法。

  [设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

  4、画图法(板书:画图法)

  师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

  5、归纳算法

  解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

  三、巩固练习

  生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

  (1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

  (2)、学生独立解决,全班交流。

  [设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

  四、全课

  通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

  五、拓展延伸

  书P81“你知道吗?”

  师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

  [设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的一门学科。]

  教学反思:

  反思本次教学活动,我发现了成功与遗憾共存。

  成功之处在于:

  1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

  2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

  3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

  遗憾之处在于:

  1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

  2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

鸡兔同笼教案 篇4

  一、教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

  3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

  二、教材分析:

  (一)设计意图:

  通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

  (二)设计思路:

  遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。

  在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

  教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

  三、教学设计:

  <一>、提出问题

  师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

  问:这段话是什么意思?(生试说)

  师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

  (板书课题:鸡兔同笼问题)

  <二>、解决问题

  师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

  (课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

  师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的'思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

  学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。

  师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

  学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

  小组活动充分后进入小组汇报、集体交流阶段。

  师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

  学生汇报探究的方法和结论:

  1:画图法:(学生展示画图方法及步骤)

  ①先画8个头。

  ②每个头下画上两条腿。

  数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

  ③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

  每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

  2.列表法:

  (展示学生所列表格)

  学生说明列表的方法及步骤:

  学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

  鸡 8 7 6 5 4 3 2 1

  兔 0 1 2 3 4 5 6 7

  脚 16 18 20 22 24 26

  鸡 8 7 6 5 4 3 2 1

  兔 0 1 2 3 4 5 6 7

  脚 16 18 20 22 24 26

  学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。

  鸡 8 6 4 3

  兔 0 2 4 5

  脚 16 20 24 26

鸡兔同笼教案 篇5

  教学目标:

  1、知识与技能

  让学生学会“列举法”,并运用“列举法”解决问题。

  2、过程与方法

  让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

  让学生养成“尝试”的数学思维与方法。

  3、情感态度与价值观

  利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

  了解中国数学历史,渗透数学文化的思想。

  教学重点:

  让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

  教学难点:

  让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

  教学关键:

  让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。

  教具准备:

  三个表格,卡片。

  教学过程:

  一、导入

  1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)

  2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)

  3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)

  二、授新课

  1、师:老师想考考你们,你们看

  (师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

  师:请你赶快猜一猜吧!生:独立思考后全班交流。

  (此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把

  这题的数字变大一些,你能猜出鸡、兔各有多少只吗?

  2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

  (1)a、让生齐读题目

  b、师让生独立思考后再与同桌交流。

  c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格

  d、 此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)

  e、 观察这个表格,你发现了什么?(指名生说)

  (2) 小结:对于发现的同学及时给予表扬,你真是个善于发现的孩

  子。

  a、我们再来观察一下这个表格,我们从1开始假设时就有78

  条腿和答案的54条腿相比,怎么样?我们能不能让列举的`次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)

  b、根据生的回答,师板书:

  c、 师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给

  这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)

  (3) 师:还有别的列举法?

  a、 学生可能会说出取中列举法,师就问让其说清楚,明白。

  学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

  b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)

  3、 观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)

  4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,

  大家有信心运用所学问题解决实际问题吗?

  三、

  1、试一试

  完成81页练一练第2、3题。(先独立完成再集体订正。)

  2、 深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)

  四、课堂小结:

  通过这节课的学习,你学会了什么?(先请生说,师再总结。)

鸡兔同笼教案 篇6

  第1课时 鸡兔同笼

  教学内容:P116页的练习二十五的第20题。

  教学目标

  知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

  过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

  情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的`能力,进而体会数学的价值。

  教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

  教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

  教学过程

  一、情境导入

  师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

  师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

  生1:列表法,适合数据较小的问题。

  生2:假设法,一般情况都适合,数量关系比较容易理解。

  师:今天我们复习“鸡兔同笼”问题。

  二、自主探究

  师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

  师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

  师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

  三、探究结果汇报

  师:通过复习“鸡兔同笼”问题,你有哪些收获?

  生1:借助列表的方法,解决简单的实际问题。

  生2:我学会了化繁为简的学习方法。

  生3:用“假设”法解决问题的一般性。

  四、师生总结收获

  师:通过本课的学习,你有哪些收获?

  师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

  板书设计

  鸡兔同笼假设→调整(列表、画图)→检验

鸡兔同笼教案 篇7

  教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

  3、在解决问题的过程中培养学生的逻辑推理能力。

  教学重点:

  理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

  教学难点:

  理解用假设法的算理并能运用不同的方法解决实际问题。

  教学方法:

  1、采取直观形象的方式,让学生探讨不同的方法。

  2、适当把握教学要求。

  一、历史激趣,导入新课

  今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

  师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的.问题。(板书课题)

  结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

  二、探究交流,尝试解决问题。

  1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

  2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

  让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(出示)

  3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

  学生猜测,老师板书

  4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

  (一)、尝试列表法

  为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)

  (二)、假设法

  1、假设全是鸡

  8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)

  26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

  4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

  10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

  8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。

  2、假设全是兔

  我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(出示:把一只鸡当成一只兔算,就多了两条腿)

  先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

  小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

【鸡兔同笼教案】相关文章:

鸡兔同笼教案01-02

鸡兔同笼教案(15篇)02-22

鸡兔同笼教案15篇02-13

精选鸡兔同笼教案四篇08-09

鸡兔同笼教案6篇03-19

鸡兔同笼教案汇总8篇04-04

鸡兔同笼教案模板5篇04-04

鸡兔同笼教案合集五篇04-04

鸡兔同笼教案通用15篇02-22

鸡兔同笼教案范文五篇04-07