范文资料网>反思报告>教案大全>《倒数的认识教案

倒数的认识教案

时间:2023-04-18 12:54:01 教案大全 我要投稿
  • 相关推荐

倒数的认识教案(15篇)

  作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。教案要怎么写呢?以下是小编帮大家整理的倒数的认识教案,希望对大家有所帮助。

倒数的认识教案(15篇)

倒数的认识教案1

  教学目标:

  (1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)能力目标:进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:

  知道倒数的意义,会求一个数的倒数

  教学难点:

  1、0的倒数的求法。

  教具准备:

  多媒体课件

  教学过程:

  一、开门见山,揭示课题

  1、出示课题:倒数的认识

  老师:今天我们一起来学习第三单元分数除法的第1课时:倒数的认识

  2、理解字的意思

  老师:上课之前老师想请同学帮我解决个问题:“倒”这个字怎么读的?

  学生:倒dǎo,dào

  师:这两种读音表示的意思一样吗?学生用茶杯演示。

  3、老师:你觉得在这里这个“倒”字怎么读?你见过这样的数吗?

  学生举例说说。

  看到这个课题,在你的头脑中会产生什么问题?

  (设计意图:学生通过自己对字的理解,初步感知什么是倒数)

  二、探索新知,突破重点

  (一)、倒数的意义

  1、初步探究

  师:请看这两组算式,我们分组完成,比比哪组同学速度快。

  学生计算,交流

  老师:做第1组算式的同学完成的快

  这时学生可能会说:不公平,第1组的题目简单,得数都是1、

  老师:为什么第1

  组的算式简单,有什么特点?

  生:每组数中两个分数的分子、分母的位置颠倒过来了。

  生:都是乘法。

  生:得数都是1、

  老师:这样的两个数互为倒数,你们能用一句话说说什么是倒数吗?

  学生试着概括

  师概括并板书:乘积是1的两个数互为倒数。

  师:找一找关键词,说说你对这句话的理解。

  生1:乘积是1、是乘法,而且积是1

  生2:两个数,只能是两个数,三个,四个数的乘积是1也不能说它们互为倒数。

  生3:互为倒数。

  老师:“互为倒数”是什么意思呢,谁愿意说说

  老师:这学期我们班来了几位新同学,经过几周的相处,你们之间互相成为朋友了吗?谁能告诉大家,你是怎样理解“互相成为朋友”这句话的?

  生:我是他的朋友,他也是我的朋友。

  师:那我们举个例子说说。比如3/8和8/3的乘积是1

  ,我们就说因为3/8和8/3互为倒数。所以3/8的倒数是8/3;也可以说8/3的倒数是3/8。(示范说)

  师:同桌两个人举出倒数的例子,并仿照刚才老师说的用上“因为”

  “所以”。

  (设计意图:学生在计算练习中体会互为倒数的两个数的乘积是1,同时也体会到互为倒数的两个数的练习与区别,为求一个数的倒数做准备。)

  2、深入剖析

  师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

  生1:“互为”是指两个数的关系。

  生2:“互为”说明这两个数的关系是相互依存的。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  师:和的积是1,我们就说(生齐说)

  师:5和的乘积是1,这两个数的`关系可以怎么说?

  (小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  (二)、倒数的求法

  1、求分数的倒数

  师:(出示课件例1)下面哪两个数互为倒数?请同位的同学之间在一起交流一下,把它们找出来。(学生合作交流,认真寻找。)

  老师:你是怎样找出来的?

  学生回答,老师问:五分之三的倒数和五分之三相等吗?

  学生:不相等

  板书:

  2、求整数的倒数

  师:整数6的倒数怎么求?

  生:把6看成是分母是1的分数,再把分子分母调换位置。

  板书:

  3、交流一下1和0这两个特殊的数。

  师:那1

  的倒数是几呢?(学生很快就说出来了,并说明了理由)

  师:0的倒数呢?生:没有。

  师:为什么?

  学生讨论交流

  生1:因为0和任何数相乘都得0,不可能得1。

  生2:分子是0的分数,实际上就等于0,0可以看成是0/2、0/3……把这些分数的分子分母调换位置后分母就为0了,而分母不可以为0。

  师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  生3:1

  的倒数是1,0没有倒数。

  生齐读求一个数倒数的方法。

  (设计意图:学生在讨论交流中探索1、0的倒数,能很好的理解)

  三、巩固练习

  1、写出下面各数的倒数。

  2、写出下面各数的倒数。

  ①0、8的倒数是()。

  ②的倒数是()。

  3、争当小法官,明察秋毫。

  (1)1的倒数是1。

  (2)A的倒数是1/A。

  (3)因为0、5×2=1,所以2是倒数。

  (4)真分数的倒数都大于1,假分数的倒数都小于1。

  (5)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。

  四、总结反思、评价体验

  这节课你们有什么收获?还有什么疑问?

  (设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

  五、课堂小结

  师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!

倒数的认识教案2

  教学目标

  1.理解和掌握倒数的意义.

  2.能正确的求出一个数的倒数.

  3.培养学生的观察能力和概括能力.

  教学重点

  认识倒数并掌握求倒数的方法

  教学难点

  小数与整数求倒数的方法

  教学过程

  一、基本训练

  (一)口算

  =

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系.

  (板书:倒数)

  三、新课教学

  (一)乘积是1的两个数存在着怎样的倒数关系呢?

  请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数.

  和 存在怎样的倒数关系呢?2和 呢?

  (二)深化理解

  教师提问

  1.什么是互为倒数?

  2.怎样理解这句话?(举例说明)

  ( 的倒数是 , 的倒数是 ,不能说 是倒数,要说它是谁的倒数.)

  3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).

  (三)求一个数的倒数

  1.例:写出 、 的倒数

  学生试做讨论后,教师将过程板书如下:

  所以 的倒数是 , 的倒数是 .

  (能不能写成 ,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.

  副标题#e#

  2.深化

  你会求小数的'倒数吗?(学生试做)

  三、训练、深化

  (一)下面哪两个数互为倒数

  (演示课件:1)

  (二)求出下面各数的倒数

  (演示课件:2)

  (三)判断

  1.真分数的倒数都是假分数.

  2.假分数的倒数都小于1.

  3.0没有倒数.

  (四)提高

  如果末尾加上=1怎么填?

  如果末尾加上=0怎么填?

  如果末尾加上=2怎么填?

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

  五、课后作业

  (一)下面哪两个数互为倒数?

  8

  (二)写出下面各数的倒数.

  3 1

  六、板书设计

  教学设计点评

  这个教学设计符合知识本身的内在联系以及学生的认知规律,教学目的明确,要求具体,重点突出,结构严谨,层次清晰。

  教学中教师紧紧围绕倒数的意义,使学生在观察比较中理解知识、掌握知识,体现了学生学习新知形成能力的过程。

  练习中,通过教、扶、放使讲练有机结合,既加强了双基,又开发了智力。

倒数的认识教案3

  整体感知

  倒数的认识的教学,主要是通过观察,分析,对比,概括的方法让学生讨论,举例,交流,真正理解什么是倒数,怎样求倒数.待新知识弄清之后,根据本课内容的特点适当插入一些内容,也就是在教学过程中让同桌同学互相多提问,师生之间多提问,互相解疑,列举出一定范围各种各样的数,一方面看有没有倒数;另一方面看一看有倒数怎样求,这样可以激发学生探索新知识的兴趣,使课堂气氛活跃,在愉快之中达到理解,掌握之目的

  教学内容:教材23页的内容以及练习六1至6题.

  素质教育目标

  (一)知识教学点

  1.通过学生观察,分析,比较,理解倒数的意义.

  2.用列举的方法,发现规律,使学生掌握求倒数的方法.

  (二)能力训练点

  培养学生阅读能力,以及抽象概括能力,能准确地写出一定范围的各个数的倒数.

  (三)德育渗透点

  通过倒数的学习,同时渗透辩证唯物主义观点,倒数间的各个数都是相互依存,不能孤立存在.

  教学重点:理解倒数的意义和怎样求倒数.

  教学难点:求倒数方法的叙述.

  教学步骤

  一,铺垫孕伏

  1.口算:

  2.填空:

  二,探究新知

  (一)教学倒数的意义:

  1.揭示课题:今天这节课我们学习一个知识倒数.究竟什么是倒数,怎样求倒数呢 我们一起探讨.教师板书:倒数的认识.

  2.观察算式:

  (2)计算结果,发现共同点:每个算式中两个数相乘的积是1.

  (3)互相讨论:通过几组算式及结果你有什么新发现 引导学生说出:每组中每个分数分子,分母调换了位置,相乘的结果都是1.

  3.教师概括并板书:乘积是1的两个数叫做互为倒数.

  (1)互相议论:两个数指什么数 互为倒数是什么意思

  引导说出:两个数指两个分数或一个整数和一个分数,互为倒数是说一个数是另一个数的倒数,不能说某一个数是倒数.

  (3)学生举例:

  ①每人举出3组倒数的例子,并说明谁是谁的倒数

  ②同桌互相举例(每人2组),并用倒数的定义来检验.

  4,教师小结:通过分析你明白了什么 倒数是指两个数而说,互为倒数是指一个数不能称倒数,必须是一个数是另一个数的倒数.

  5.反馈练习:

  (1)判断:

  ①倒数是一个数( )

  (二)教学求倒数的方法:

  1.学生举例:谁能举出一组互为倒数的两个分数.

  2.观察发现:互为倒数的一组数分子,分母有什么特点

  引导学生找出互为倒数的两个数的分子,分母位置是互换的

  3.谈想法:设想一下怎样可以找到一个数的倒数呢

  4.讲解例题:

  (2)根据倒数的意义,自己找出求倒数的方法.使学生知道:只要把

  (3)师生共同发现:求倒数的方法只要把这个数的分子,分母调换位置即可.

  (4)表达方式并板书:

  5.自然数怎样求倒数

  (1)自己任意举出一个自然数,看有没有倒数 并追问:你是怎么想的 引导学生说出:自然数可以看成分母是1的分数,也可以把分子,分母调换位置.

  (2)归纳求自然数倒数的方法,引导学生说出,一个自然数的倒数就是以这个自然数作分母,以1作分子的分数.

  6.总结方法

  (1)学生试述,互相讨论,看谁能够准确表达求倒数的'方法.

  (2)准确归纳并板书,求一个数( )的倒数,只要把这个数的分子,分母调换位置.

  (3)讨论:是不是所有数都有倒数 为什么

  引导学生说出:0没有倒数,因为0可以作分子,但调换位置后变为分母,分母不能是0,所以0没有倒数.

  (4)教师板书:(0除外)

  7.阅读课本中倒数意义和求倒数的方法.

  三,巩固发展

  1.判断下列说法是否正确 错的改正.

  (1)任何数都有倒数.

  (2) c和d互为倒数,所以cd=1.

  四,全课小结

  通过这节课的学习,你知道了什么 学会了什么 引导学生说出乘积是1的两个数叫做互为倒数,必须是互为倒数,以及求倒数的方法.

  五,布置作业

  练习4,5,6题做在作业本上.

  六,板书设计

  倒数的认识

  乘积是1的两个数叫做互为倒数

  求一个数(0除外)的倒数,只要把这个数的分子,分母调换位置.

倒数的认识教案4

  教学目标

  1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重难点

  教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法

  教学过程

  一、导入

  课件出示:

  1、找规律:指生回答。

  2、找规律,填空,指生回答。

  3、口算,开火车口算。

  4、你能找出乘积是1的两个数吗?指生说。

  今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  1、教学倒数的意义。

  (1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  (2)学生汇报研究的结果:什么是倒数?生生说,举例说明。

  乘积是1的两个数互为倒数。举例说明。课件出示。

  观察每一对数字,你发现了什么?

  像这样乘积是1的数字有多少对呢?

  (3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  (4)互为倒数的两个数有什么特点?

  像这样的`每组数都有什么特点呢?

  两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)

  2、教学求倒数的方法。试着写出3/5 、7/2的倒数。

  (1)写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  (2)写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  想:写出6的倒数。独立完成。

  先把整数看成分母是1的分数,再交换分子和分母的位置。 6

  = 6/1 1/6

  求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

  3、教学特例,

  深入理解

  (1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  (2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  4、课件出示,巩固练习:这些数怎样求倒数呢?

  (1)学生独立解答,教师巡视。

  (2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

  三、巩固应用

  课件出示:

  1、练习六第2题:填一填。

  2、找朋友。

  3、写出上面各数的倒数

  4、辨析练习:练习六第3题“判断题”。

  5、我的发现。

  6、马小虎日记,开放性训练。

  7、谜语:

  五四三二一

  (打一数学名词)

  四、总结

  你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

倒数的认识教案5

  教学目标:

  1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

  2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

  教学重点:理解倒数的意义,掌握求倒数的方法。

  教学难点 :熟练写出一个数的倒数。

  教具准备:多媒体课件。

  教学过程:

  一、情境导入。

  1、口算。

  5/12×2/5 = 15/7 ×7/5 = 11/8 ×8/13 =

  5/21×1/5 = 3/16 ×7/3 = 8/21 ×7/8 =

  先独立考虑,再指名口算订正。

  2、比一比,看谁算得又对又快:

  2/3×3/2 = 2×1/2 = 11/8 ×8/11 =

  1/10×10= 7/9×9/7 = 1/7×7=

  6/5×5/6 = 1/5×5 = 22/35×35/22 =

  同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

  【设计意图:通过口算,观察,考虑,激发了同学的学习兴趣和强烈的探究欲望,使同学获得积极的情感经验。】

  二、合作探索。

  1、小组合作交流:

  (1)和同桌说一说你的发现。

  (2)请你自身举出3个像上面这样的乘法式子。

  小组代表说说有什么发现。指名说说自身举出的例子。

  教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

  教师:关于倒数的`知识,你已经有哪些认识?(同学说说自身的已有认识)

  教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

  阅读教材,进一步理解。

  教师:现在谁来说一说自身是怎样理解倒数的?

  同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

  出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

  【设计意图:关于倒数,局部同学已经有一定的知识准备,教学时采用小组合作交流、阅读课本的方法,让同学自主的体验学习知识的过程与获取知识的方法,提高同学的自主学习能力,同时,在合作交流的过程中,培养同学的独立考虑和合作探究意识。】

  2、强化概念理解。

  你认为下面这两种说法是否正确?

  (1) 2/3 是倒数。

  (2) 得数是1的两个数互为倒数。

  同学先独立考虑,再口答,说明理由。

  【设计意图:一些同学通过自身的阅读和交流获得的知识往往是比较肤浅的,为让同学深刻的理解,需要教师的点拨,这样较好的完善同学认识,更利于同学掌握所学的知识。】

倒数的认识教案6

  一、 教学内容:

  九年义务教育六年制第九册第二单元《倒数的认识》

  二、 教材分析:

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的,数学教案-倒数的认识。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、 教学目标:

  1.理解倒数的意义,掌握求倒数的方法。

  2.能熟练地写出一个数的倒数。

  3.结合教学实际培养学生的抽象概括能力。

  四、 教学重点

  理解倒数的意义,掌握求倒数的方法。

  五、 教学难点

  熟练写出一个数的倒数。

  六、 教学过程:

  (一)、 谈话

  1.交流

  师: 我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么关系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存关系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存关系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

  2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1.学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数

  师:4是3的4/3,

  生:3是4的 3/4

  师:7是15的7/15; 生:15是7的15/7。

  提问;看我们做游戏的结果,你们有没有发现什么?

  生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

  生2:两个分数的分子、分母相互调换了位置。

  生2:两个分数的乘积是1。

  提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识

  提问:那么怎样的两个数才是互为倒数呢?指导看书。

  思考:

  (1)什么是倒数?满足什么条件的两个数互为倒数?

  (2)你能找出互为倒数的两个数吗。请举例

  评析:回答问题

  理解“互为”的意义。怎样的两个数互为倒数。

  找朋友游戏(课前每位同学发一张数字卡片)

  练习

  (1)出示卡片 (六位同学举着卡片依次站在黑板前)

  7/9 11/4 1/50 8 6/5 99

  (2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

  提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

  3教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5 9 1/7/8 0.4

  小组讨论 指名板演

  提问:1.你是怎么找出2/3的倒数的?

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置,小学数学教案《数学教案-倒数的认识》。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

  2.你是怎么找出7/4的倒数的?

  提问: 我们怎样才能很快地找到一个数的倒数?为什么?

  4.练习 请剩下的.没有找到朋友的同学继续找倒数

  5.讨论:1的倒数是谁?0的倒数呢?

  生:1的倒数是1

  师:能说明一下理由吗?

  生1:因为1与1的乘积还是1。

  生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

  师:0的倒数呢?

  生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

  生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

  生4:0可以写成0/1,0/1的倒数是1/0。

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

  6.完善求一个数的倒数的方法

  三、 巩固练习

  (一)填空

  1.因为5/3*3/5=1,所以()和()互为();

  2.因为15*1/15=1,所以()和()互为 ();

  3.4/7与()互为倒数;

  4.()的倒数是6/11

  5.()的倒数是2

  6.1/8的倒数是()

  7.1/2/7的倒数是()

  8.0.3的倒数是()

  (二)判断

  1.得数是1的两个数互为 倒数。()

  2.互为倒数的两个数乘积一定是1。()

  3. 1的倒数是1,所以0的倒数是0 。()

  4.分数的倒数都大于1。()

  (四)思考

  4/5*()=()*8

  四、总结

  今天我们学习了什么知识?你有什么收获?还有什么问题吗?

  五、 布置作业

  简评:

   一、自主学习中让学生勇于创新

  新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。

  二、在游戏活动中实现新知的推进

  游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。

倒数的认识教案7

  教学目标

  1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

  2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点和难点

  1.正确理解倒数的意义及“互为”的含义。

  2.正确地求出一个数的倒数。

  教学过程设计

  一、创设情境,提出问题。

  师:我们知道语言文字中有些字是可以倒过来写的。

  比如:吴—吞

  学生举例:杏—呆。

  师:数学中有没有这种情况呢?

  你能把4/7倒过来写吗?

  板书:4/7--(7/4)8/3--(3/8)2--(1/2)

  师:你能根据分子、分母的位置关系给这几组数取个名字吗?

  生:倒数。

  出示课题:倒数的`认识。

  二、教学倒数的意义.

  (1)5/8×1/8 7/15×5/7 6×1/2 1/40×5

  (2)3/4×4/3 6/7×7/6 3×1/3 2/9×9/2

  教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都不是1,

  第二组每个算式中两个数相乘的积都是1.)

  教师:“像第二组这样,乘积是1的两个数叫做互为倒数.”

  教师举例说明什么叫做“互为倒数”.

  3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.

  教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一

  个数的倒数,不能孤立地说某一个数是倒数.”

  让学生试着说一说第二组其它3个算式中两个数的关系.说的时候,注意让

  学生说出“互为倒数”,同时,让学生明确谁是谁的倒数.

  教师:“谁还能举出几组两个数互为倒数的例子?”多让几个学生说一说,

  并让学生根据倒数的意义来检验是不是正确.

  三、教学例题(求倒数的方法).

  教师:“请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?”让学生适当讨论,并对发现的规律

  进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

  出示例题.“怎样找出的倒数呢?你能用刚才发现的规律找出来吗?”使学生想到只要把的分子、分母调换位置就是的倒数.教师板书:

  分子、分母调换位置

  ─────────→

  的倒数就可以让学生自己写.

  教师接着问:“自然数5的倒数是多少?5可以看成分母是几的分数?”(可

  以看成分母是1的分数.)

  “那么5的倒数怎样求?”(把分子、分母调换位置,3的倒数就是1/5.)

  教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以

  这个自然数作分母以1作分子的分数.)

  接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数.)

  “0为什么没有倒数?”(因为0不能作分母,所以0没有倒数.)

  教师:“请大家总结一下求一个数的倒数的方法.”让学生多说一说,教师

  注意提醒学生把排除在外.

  四、课堂练习。

  写出下面各数的倒数:

  4/13 9 1/7 25

  反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。

倒数的认识教案8

  一、引导探究、合作交流

  (一)、意义——从学生比赛中引出,倒数的认识教案。

  1、同桌比赛:(看谁做得又对又快)第一组:(左边学生)×、×第二组:(右边学生)×、×

  2、思考:为什么左边学生做得又对又快?师:观察第一组中的算式有什么特点?(学生汇报:乘积是1)归纳总结:同学们我想刚才比赛的输赢是次要的,但发现这组算式的特点却是重要的。

  3、像这样乘积是1的数你还能写出几组吗?()×()=1、()×()=1

  4、归纳总结、揭示概念乘积是1的两个数叫做互为倒数。(板书)加深理解“互为”

  5、选一组算式说一说

  1谁是谁的倒数?

  2、谁是谁的倒数?

  3谁和谁互为倒数?

  (二)、探索求一个倒数的.方法

  1、提问:我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子,教案《倒数的认识教案》。

  2、师生一起小结:求一个数的倒数,只要把分子分母调换位置。(板书)

  3、提问:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)0的倒数呢?

  4、我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

  二、巩固练习

  1、试着写出3/5、7/2的倒数

  2、试着写出6的倒数

  3、试着写出二又三分之一的倒数

  4、说出下面各数的倒数。2/57/11130.5

  三、拓展延伸

  1、填空:

  (1)1/9的倒数是(),7的倒数是(),0.7的倒数是。

  (2)的倒数是它本身,没有倒数.

  (3)8×=10.75×=1×0.5=12、

  判断:

  (1)因为0.25×4=1,所以0.25和4互为倒数。

  (2)a的倒数是1/a。

  (3)真分数的倒数都大于1。

  (4)假分数的倒数都小于1。

  (5)1/3是倒数。()

  (6)得数是1的两个数叫互为倒数。

  四、布置课堂作业:

  1、必做题:在作业本上完成学习之友对应练习的第1、4两小题.

  2、选做题:3/4×()=()×7/11=()×6

  五、总结反思,回顾梳理。

  1、今天我们一起学习了倒数的有关知识,你有哪些新的收获?

  2、还有什么问题吗?(没有)

  3、学了倒数有什么用呢?大家课后可去思考一下。

  六、欣赏生活中倒着的现象。

  板书设计倒数的认识乘积是1的两个数互为倒数1的倒数是1。0没有倒数。

倒数的认识教案9

  目标确定的依据

  1.课程标准相关要求

  理解倒数的含义,能进行准确的叙述,会求一个数的倒数。

  2教材分析

  这部分内容是新知识,是为后面学习分数除法扫清障碍。由于分数除法的基本方法为“除以一个不等于0的数,等于乘这个数的倒数”,因此认识倒数的概念以及熟练地求出一个非0数的倒数,是学习分数除法的基础。

  3.学情分析

  倒数的认识是在学习了分数乘法的基础上学习的,主要为后面学习分数除法做基础。

  目标

  通过观察、分类、讨论等活动认识倒数,能说出倒数的意义。

  2.体验找倒数的方法,会求一个数的倒数。

  3.在探索交流的活动中,经历观察、归纳、推理和概括的学习过程。

  评价任务

  学生口算、思考互为倒数的特征。

  2.会求一个数的倒数。

  3.通过交流、游戏活动探讨找倒数的方法。教学过程

  一、创设情境,引入新课

  1、创设活动“造反”游戏。

  师:同学们,在学习新课之前,先让我们来玩一个游戏,游戏的名字是“造反”游戏

  反说:

  刷牙—牙刷球台—台球唱歌—歌唱反写:

  杏—呆吴—吞干—士

  师:在我们的语文上有许多这样有趣的文字,那么在我们的数学王国里,也有这样有趣的.数学,大家一起来试一试。

  像这样有趣的现象,在数学上叫什么呢?这就是我们这一节要学习的

  板书“倒数的认识”看到这个题目,你有什么问题吗?生1:生2:

  师:带着这些问题,我们来深入探究一下“倒数”我们先来算一算

  谁能照上面的例子,再说一说?通过上面的算式,你有什么发现?生1:生2:

  师:大家都是活眼金睛啊!那么大家的这些发现之间有没有什么必然的联系呢?

  下面请大家打开课本,自学一下下面的知识。

  请学习完的同学坐端正。回答:什么是倒数?

  怎样叙述它们之间的关系?生1:生2:生3:

  板书:乘积是1的两个数互为倒数。

  师:你认为在这句话中,哪些字或词语比较重要呢?那么,根据上面的两组算式,谁来叙述一下它们之间的关系。生1:生2:

  大家的叙述都非常准确,老师这有两道题,请你也来试一试师:通过上面的学习,你认为怎样求一个数的倒数呢?

  板书:求一个数的倒数,只要把分子和分母调换位置就可以了。 评价要点:知道交换位置

  除了这些,老师还带来两个特殊的朋友0和1下面请大家讨论下面的两个问题(1)1的倒数是(1)(2)0有没有倒数?为什么?

  0和1都来了,那么还有一些老朋友也来凑热闹了。动脑筋:整数,带分数、小数如何找倒数

  怎么办?

  整数都可以看成分母是1的假分数

  带分数也可以化成假分数。小数也可以化成分数。今天,大家的表现都棒棒的,下面我们来试试身手吧.想一想:找朋友练习1:写倒数

  练习2:整数、假分数的倒数填空

  既然大家都这么棒,那么我们一起来智慧屋里去闯一闯吧!第一关:填空(积是1)

  第二关:我来当裁判(以书信的形式出现)第三关:修改日记。

  希望大家也能把本节课学习的知识,用日记的形式写下来。

  其实,在我们的学习中,各学科之间都是有一定的联系的,下面大家来看一看下面几道题。

  最后,我们来猜谜语。

倒数的认识教案10

  活动目标:

  1、让幼儿掌握从1数到10,从10数到1的顺数和倒数的方法,进一步掌握数的顺序。

  2、 让幼儿感知从1到10,按顺序顺数逐个多1,倒数逐个少1。体验10以内自然数列中序列之间的可逆性及可传递性。

  3、发展幼儿思维的敏捷性和逻辑性。

  活动重点:让幼儿掌握从10数到1的倒着数的方法,进一步掌握数的排列顺序。

  活动难点:让幼儿感知从1到10,按顺序数逐个多1,倒着数逐个少1。

  活动准备:小老鼠爬楼梯课件、1—10的数字卡(5组)、磁性教具。

  活动过程:

  一、集体活动,熟悉10以内数的顺数。

  小朋友们非常喜欢听故事,今天老师特意为大家带来了一个关于小老鼠卡尼的故事,小朋友想不想听?在一个星期六的早晨,阳光明媚,小老鼠卡尼要去朋友家做客,他的朋友住在10楼,我们一起来看看卡尼是怎样一层一层地走到朋友家的.。

  1、出示课件《小老鼠爬楼梯》,上楼时顺数 1—10。

  卡尼的朋友非常好客,他们一家热情的接待了卡尼,和卡尼一起吃饭,还一起游戏,小朋友想不想知道他们玩什么游戏了吗?老师告诉你们,他们玩的是拍手游戏,我们也一起来玩玩这个游戏。

  2、游戏“拍手”。(巩固顺数)

  游戏玩法:拍手的次数比说的多1. 如:我说5,我拍6(幼儿拍6下手,6比5多1),如此多练几次。

  小老鼠卡尼非常聪明活泼,他和朋友们玩了一会儿拍手游戏,感觉没意思了,于是又想出一个更有趣的游戏,小朋友愿不愿意和他们一起玩这个游戏呢?

  3、游戏“找朋友”。(引出倒着数)

  游戏玩法:教师出示数卡:

  (1)、比数卡上数字多1的小朋友站起来。幼儿欢呼:“找到了,找到了。”

  (2)、比数卡上数字少1的小朋友站起来。如此多练几次。

  玩了这么久,小老鼠们很累了,他们决定坐下来给1—10的数字宝宝排排顺序,我们也来试着排一排。(温馨提示:可以按照从小到大的顺序排列,也可以按照从大到小的顺序排列。)

  二、幼儿操作练习。

  以组为单位,引导幼儿自由排序,教师巡回指导、讲评(保留任意一组操作结果)。

  然后再请两名幼儿试贴磁性教具。(顺数、倒数)

  三、建立倒数概念。

  后一个数比前一个数多1,这样排列的一排数叫顺数。

  后一个数比前一个数少1,这样排列的一排数叫倒数。

  引导幼儿练习几次顺数和倒数。

  卡尼和他的朋友们非常喜欢我们班的小朋友,他还想和我们做一个游戏,叫”数字接龙”,谁想参加游戏,请举手。

  活动结束:数字接龙。

  1、教师任意指一个数,幼儿接着顺数(到10为止)。

  2、教师任意指一个数,幼儿接着倒数(到1为止)。

  小老鼠卡尼和他的朋友们在我们班小朋友的陪伴下,今天玩得特别开心,接下来该是小卡尼回家的时候了,大家一起送卡尼下楼去,可别忘了说再见哦!

  出示课件:小老鼠下楼梯(小老鼠下一个楼梯,小朋友说出一个数字——10、9、8、7、6、5、4、3、2、1) ,“再见……”

倒数的认识教案11

  教学目标:

  1. 通过自学、交流、错例讨论评析经历倒数的意义这一概念的形成过程,并理解倒数的意义。

  2.通过写一写、说一说的形式,引导学生观察并寻找求一个数的倒数的方法。

  3.培养学生推理和概括能力。

  教学重点:理解倒数的意义,会求一个数的倒数。

  教学难点:0为什么没有倒数。

  教学过程:

  设疑与探究:

  师:同学们,我们今天要来学习一个新知识,学好了这个新知识能为我们后面分数除法的学习打下坚实的基础。一起来看看是什么新知识呢?请同学们翻开课本24页。(板书:倒数)请同学们带着下面几个问题先自学,看看你能自学到多少有关倒数的知识呢?把你学到的知识画下来。

  ①什么是倒数?(倒数的意义是什么?)

  ②怎样求一个数的倒数?(倒数有什么特点?)

  ③1的倒数是什么?0有倒数吗?为什么?

  设计理念:这是一个新的概念,所以开课开门见山,强调概念的重要性,引起学生的重视,同时能直接进入新课的学习。另一方面,让学生带着问题自学文本。数学课程改革强调培养学生的自主学习能力,注重学生的自主发展,先学后教,在学生自学的基础上,教师再进行针对性教学。同时让学生带着问题去学,能够给自学作出一些指引。

  反思:三个问题暗示了这节课学习的主要内容,能让学生仅仅围绕这几个问题去展开后面的学习。但是另一方面也限制了学生的思维,也许学生在自学的过程中会提出很多问题,老师可以从你能提出什么问题?你能解决什么问题?你还有哪里不明白?去引导,进而培养学生提出问题、解决问题和发现新问题的能力。课堂上围绕学生提出的问题去开展探究学习,能有效的利用课堂生成的动态资源,也能更好的开展课堂评价,这样的课堂会更活力。

  (一)、揭示倒数的意义

  1、自学文本,初步形成概念

  学生自学文本,同桌交流。

  2、探讨错题,理解概念

  师:第一个问题,相信很多同学心里都已经有答案了。但是老师先要考一考你,请看下面的题。(判断,并说明理由)

  ①因为1/4+3/4=1,所以1/4和3/4互为倒数。( )

  生:因为乘积是1的两个数叫做互为倒数,而这里是和是1。(板书乘积是1)

  ②因为1/24/33/2=1,所以1/2、4/3、3/2互为倒数。( )

  生:因为倒数是两个数,而这里是三个数。(板书两个数)

  ③因为2/55/2=1,所以2/5是倒数。( )

  生:因为倒数是两个数相互依存的关系。(板书互为倒数)

  进一步形成概念,全班读一遍倒数的意义:乘积是1的两个数互为倒数。

  设计理念:概念教学要把握概念本身的基本特性。要掌握倒数这个概念需要抓住三个特性:乘积是1、两个数、互为。学生通过初步的自学很难去准确把握这三点,因此设计这三个错例,旨在让学生充分把握这三个特性,进而形成和理解概念。

  反思:对于什么是倒数?学生通过自学,肯定都没有问题,但是我没有(或者说不让)让他们回答这个问题,这样一下子抑制了他们想回答但是不能回答的情绪,转而先考一考你,吸引他们看问题,激发他们在判断的时候终于有话可说。这样很好的调动了学生的好胜心。但是在 互为的理解上,没有充分探讨,可以引导学生从下面两句话去理解:( )和( )互为倒数、( )是( )的倒数。

  评价与生成:

  3、多种练习,深化概念

  (1)口头回答

  3/4( )=1,( )6/5=1,7( )=1

  设计理念:学生初步理解概念,需要一个逐渐消化的过程。设计这题一是给学生提供模仿的过程,二是能直观的把概念具体化。

  (2)模仿创作

  师:我们已经知道了什么是倒数,你能不能写出乘积是1的任意两个数?( )( )=1(生:能)我们就进行一个小小的比赛。请大家拿出堂上练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。(根据学生写的,选择性的板书4个,例如真分数的2/33/2=1,假分数的7/44/7=1,整数的61/6=1,小数的0.110=1。)

  师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。 太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(生:无数个)

  设计理念:学生有了第一题的具体直观练习,再通过比赛的形式鼓励学生进行模仿创作。因为每个学生创作的都不一样,这时老师可以有效的利用这些资源,为下面的观察倒数的特点和求各种类型的数的倒数的学习提供平台。

  反思:在这一环节,学生都能写的是真分数的、假分数的和整数的,学生没有想到带分数的和小数的,这是我在课前就有思想准备的,于是我设计了下面师生互说互猜的环节,学生想不到的,可以由老师抛出问题让学生思考,这样有时候更能激发学生的思维。但是也有一个学生写的11=1是我没有想到的。其实学生能写出这个,就能为后面1的倒数是几找到答案。但是很可惜,我没有很好的处理这个式子的出现,也没有及时的对这位学生给出表扬,还是教学机智不够灵活。

  (3)师生互说互猜

  师:不过老师比你们更厉害。我不但能写出这么多算式,而且还能猜出你们写的是什么?只要你说出你写的第一个数,我就能猜出你写的第二个数是什么?生说师猜。反过来,师说生猜。(要求按照我说 ,我说 ,因为( )( )=1来回答,老师根据情况有选择的板书,例如板书小数的和倒数的。)

  师:同学们,其实我们在创作和互说互猜的过程中,就是在找一个数的倒数。那通过练习和我们刚刚的自学谁来说说怎样找一个数的倒数呢?倒数有什么特点?

  您现在正在阅读的小议“倒数的认识”教学概念课文章内容由收集!本站将为您提供更多的精品教学资源!小议“倒数的认识”教学概念课设计理念:师生互说互猜的环节在前两个题的基础上,又是一个提升,同时师说生猜,老师能够根据学生没有想到的问题提出来,及时进行补充提升,进一步激发学生的思维。同时要求按照我说 ,我说 ,因为( )( )=1来回答,既能进一步抓住概念的本质,又能培养学生的'推理和表达能力。通过口头回答模仿创作互说互猜的多种形式练习,由易到难逐步深化概念,符合学生的认知规律。

  反思:在这一环节,出现了预想到的东西,也出现了很多散发性的东西。但是正是这些东西才构建了活力课堂的有效生成资源。同时一句老师比你们更厉害一下子触动了他们的情绪,很多学生表示我们也能,进而很好的调动了课堂。

  (二)、探索求一个数的倒数的方法。

  1、观察式子,发现特点,归纳方法

  学生自己归纳方法:只要把分数的分子和分母交换位置。(板书)

  追问:为什么求一个数的倒数,只要把分子和分母交换位置呢?

  学生讨论得出:因为相乘时分子分母就可以完全约分,得到乘积是1。

  师:如果我们用a/b表示一个分数,那么它的倒数就是b/a。(板书:a/b的倒数是b/a)

  设计理念:概念首先是具体到抽象生成,进而是抽象到具体的上升。因此如果只是从概念本身出发去找特点很困难,于是让学生回到具体的式子,观察发现特点,归纳方法。同时追问为什么?引导学生抓住概念的本质乘积是1。充分体现方法都是以概念做基础,概念是构建理论大厦的基石。同时又把它具体到用字母表示,能更直观的体现倒数的特点。

  反思:从学生自己归纳方法,到老师在此基础上进一步提升到用字母表示,能让学生更直观的发现倒数的特点。但是也有一点是没有处理好,因为字母可以表示任何数,应该写明a、b,这样就更严谨了。

  2、解疑难点(求整数、带分数,小数的倒数)

  师:老师还有几个问题,你们能帮帮老师吗?怎么求下面这几个数的倒数?

  4?(生:把整数看作分母是1的分数)

  1又3/7呢?(生:先化成假分数)

  0.5呢?(生:化成分数)

  老师根据学生的回答,板书具体的例子。

  3、师:那1 的倒数是几呢? 0有倒数吗?为什么?

  生1:1的倒数是1,因为11=1;0没有倒数,因为0( )=0.

  4、师生共同小结方法:求一个数(0除外)的倒数,只要把分子和分母交换位置。

  生齐读求一遍数倒数的方法。

  设计理念:当学生不能提出新问题的时候,老师可以转变角色,提出问题,引导学生新的思考。

  反思:因为有了前面概念和方法较为抓实的掌握,学生在这一环节能很快的找到方法,接下来就是加强练习了。

  运用与分享:

  师:我们学习到了那么多倒数的知识,赶紧去做一些练习吧。

  1、课本24页做一做:写出下列各数的倒数。

  4/11,16/9,35,7/8,4/15

  (规范:( )的倒数是( )。)

  2、填空:

  ①7( )=15/2( )=()3又2/3=0.17( )=1

  ②一个数和它倒数的和是2,这个数是( )

  ③最小的质数的倒数是( )?

  设计理念:两个练习由易到难,既能检查学生对基础知识和方法的掌握程度,也能提高学生运用知识和方法的能力。

  反思:第1题的设计缺乏针对性,例如前面讲到的带分数和小数的没有。同时在规范书写上,好多学生出现问题,例如 4/11=11/4, 4/11 11/4,4/1111/4。说明了前面教学在书写规范上的疏忽,但是也正是由于这些暴露出来不规范的书写,通过师生之间的交流和纠正,更进一步加深了学生对书写规范的印象。

  小结:

  师:同学们通过今天的学习,你学到了什么?还有什么问题?

  设计理念:学生的分享过程是学生重整和提炼知识的过程,同时给学生质疑的机会,既能发现学生还存在的问题,也能更好的为后面的学习做好铺垫和研究。

  板书设计:

  倒数的认识

  乘积是1的两个数互为倒数 2/33/2=1

  分子和分母交换位置 7/44/7=1

  a/b的倒数是b/a 61/6=1

  1的倒数是1(11=1) 1又3/7=10/7, 10/77/10=1

  0的倒数是0(0( )=0) 0.1=1/10,1/1010=1

倒数的认识教案12

  教学重点:认识倒数并掌握求倒数的方法

  教学难点:小数与整数求倒数的方法

  教学过程:

  一、基本训练

  口算:

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

  (板书:倒数)

  三、新课教学

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  请看:,那么我们就说是的倒数,反过来(引导学生说)

  是的倒数,也就是说和互为倒数。

  和存在怎样的倒数关系呢?2和呢?

  2.深化理解

  提问:①什么是互为倒数?

  怎样理解这句话?(举例说明)

  (的倒数是,的.倒数是,......不能说是倒数,要说它是谁的倒数。)

  ②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

  3.求一个数的倒数

  教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

  ①出示例题

  例:写出、的倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是。

  (能不能写成,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  ②深化

  你会求小数的倒数吗?(学生试做)

  四、训练、深化

  1.下面哪两个数互为倒数

  (出示课件一下载)

  2.求出下面各数的倒数

  (出示课件二下载)

  3.判断

  ①真分数的倒数都是假分数。()

  ②假分数的倒数都小于1。()

  ③0没有倒数。()

  4.提高

  会填了吗?

  如果末尾加上=1怎么填?

  如果末尾加上=0怎么填?

  如果末尾加上=2怎么填?

  五、课堂小结

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

  六、课后作业

  练习六2、3

  七、板书设计

  略

倒数的认识教案13

  教学目标:

  1、使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

  2、培养学生的分析、推理、判断等思维能力,发展学生的思维。

  教学重点:理解倒数的意义,会求不同种类数的倒数。

  教学难点:熟练正确的求小数、带分数的倒数,发现不同种类数的倒数的一些特征。

  教学过程设计:

一、激发兴趣,揭示课题。

  1、(投影)这节课老师就要把这里面的奥秘告诉你们,相信你们得知后比老师说得还快。

  2、同学们认真观察这些算式,你有什么发现?

  板书:乘积是1的两个数

  3、你能很快说出乘积是1的两个数吗?你为什么说的这么快?有什么窍门?

  板书:分子、分母颠倒位置

  4、起名。(师指着分子、分母颠倒位置的两个分数)你能给这样的两个分数起个名吗?

  5、根据学生的评价,引出“倒数”一词,板书课题。

  (设计说明:通过师生比赛“看谁填得快”这一情境的创设,激发了学生的学习兴趣和强烈的探究欲望。让学生很快说出乘积是1的两个数,并说说有什么窍门,目的是让学生初步感受互为倒数的两个数的特征,即分子、分母颠倒位置。此时让学生给倒数起名,已是水到渠成,同时也让学生获得了积极的情感经验。)

  二、探究新知

  (一)教学倒数的意义

  1、你能根据自己的理解说说怎样的两个数叫互为倒数吗

  学生此时回答有两种可能:一种是乘积是1的两个数互为倒数,一种是分子、分母颠倒位置的两个数互为倒数。

  3、注重学生的评价,引出并板书倒数的意义:乘积是1的两个数互为倒数。

  4、进一步理解意义:在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?请举例说明。

  5、(投影)辨析:下面的说法对吗?为什么?

  (1)、是倒数。()

  (2)、得数为1的两个数互为倒数。()

  (设计说明:让学生根据自己的理解说说怎样的两个数叫互为倒数,并找出概念中的关键词语,举例说明对“互为”一词的理解,处处无不显示出学生是学习活动中的主体,教师是学习活动中的组织者和引导者。)

  (二)教学倒数的求法

  1、通过刚才的`学习,我们已经知道了什么是倒数。那你会求一个数的倒数吗?你会求什么数的倒数呢?怎么求的?能举例说明吗?

  生:我会求分数的倒数,如,把分子、分母颠倒位置就是,所以的倒数是。

  师:是个真分数,这位同学求的是一个真分数的倒数,还有谁能说出几个真分数的倒数的?(师板书三、四个例子)

  (设计说明:通过“你会一个数的倒数吗?你会求什么数的倒数?”这一问题,激起了学生思维的涟漪。此时,同学们首先想到的是求一个分数的倒数,教师强调求的是一个真分数的倒数,并让学生再举几个例子,目的是为了后面让学生发现不同种类数的倒数的特征做准备。)

  师:真分数有什么特点?那真分数的倒数有什么特征?

  板书:真分数的倒数都大于1。

  2、求假分数的倒数,研究假分数的倒数的特征。

  师:你还会求什么数的倒数?怎么求的?能举例说明吗?

  生举三、四个例子。师板书。

  师:假分数有什么特点?假分数的倒数有什么特征呢?

  组织学生讨论、交流。

  板书:假分数的倒数都大于或等于1。

  4、求整数的倒数,讨论“0”和“1”的倒数。

  继续问“你还会求什么数的倒数?”当学生说会求整数的倒数时,让学生举几个例子说说怎么求的。

  师:“1”也是整数,谁会求“1”的倒数的?怎么想的?

  板书:1的倒数还是1。

  师:有没有哪个整数的倒数你不会求的呢?

  组织学生讨论:0为什么没有倒数?

  师:仔细观察:整数的倒数有什么特征?

  板书:非0、非1的整数的倒数都是分数单位。

  追问:那分数单位的倒数呢?(都是整数)

  5、求小数、带分数的倒数。

  师:你还会求什么数的倒数?怎么求的?能举例说明吗?

  学生的回答有两种可能:一是求小数的倒数;二是求带分数的倒数。

  (1)、让学生讨论如何求小数的倒数。

  学生会想出两种求法:第一种:把小数化成分数,再颠倒分子、分母的位置,继而求出倒数;第二种:根据倒数的意义,用1除以这个小数。

  引导比较两种求法,得出第一种方法比较通用。

  (2)、让学生讨论如何求带分数的倒数。

  (3)出示几个小数(0.15、2.5、1.25等)和几个带分数让学生求出它们的倒数。

  (设计说明:人的思维活动往往由简单到复杂的,小学生更是这样。所以在老师提出“你会求什么数的倒数时”,他们首先想到的是怎样求一个分数的倒数,然后在考虑整数的倒数的求法,最后想到小数、带分数倒数的求法。这样层层深入,丝丝入扣,有效的突出了重点,突破了难点。教师教得轻松,学生学得兴趣昂然。)

  (三)学生自行总结求倒数的方法。

  板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  三、巩固练习

  1、呼应开头。现在你知道老师为什么填的这么快了吗?谁愿意在和老师比一次。(投影出示复习题)

  2、下面哪两个数互为倒数?(做练习六第二题)

  3、辨析(用手势判断对错).投影出示练习六第5题。

  4、谁会填?

  (1)×()= ×( )=3×( )=025×( )

  (2)×()= ÷()= +()= -()

  师:你是根据什么填的?

  (设计说明:练习设计,力求扎实而质朴,平淡中透新意.开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题,让课堂教学既有“深度”,又有“温度”。)

  四、反思

  这节课你有什么收获?印象最深的是什么?

  (设计说明:通过回顾,引导学生对本节课学到的知识和方法进行总结,让学生亲身感受到数学学习是有意义的。)

  五、课后作业

  练习六第6、7题。

倒数的认识教案14

  第一课时

  【学习内容】

  义务教育课程标准实验教科书(西师版)小学数学六年级上册第31页例1及填一填。第32页课堂活动第1题(1),练习八第1、2、3题。

  【学习目标】

  1.理解倒数的意义。

  2.掌握求倒数的方法,会求一个数的倒数。

  3.经历探究倒数的意义的过程,培养自主探究、归纳概括的能力。

  【学习重点】

  理解倒数的意义,掌握求倒数的方法。

  【学习难点】

  理解特殊数的倒数。

  【课时安排】

  1课时。

  【学习过程】

  一、复习巩固(利用投影打出以下算式)

  × = × = 6× = ×40 =

  × = × = 3× = ×80=

  1.让学生口算出上边等式的结果,以此复习分数乘法的相关知识。

  2.让学生观察并说说下边排分式的特点从而对倒数有一定的`感知。

  二、让学生观看书上例题1, 分组合作,讨论解疑。

  1.出示例1。 自主学习例1,相信自己是最棒的!

  例1,观察下列每组数,你有什么发现?

  和 和 和 3和

  教师提示:

  1.观察每组数中的分子、分母、找出规律.

  ①学生思考,小组交流。

  ②集体汇报

  汇报:每组数中的两个数的分子和分母都调换了位置.

  2.将每组数中的两个数相乘,计算出结果.你发现了什么?

  ①学生思考,小组交流。

  ②集体汇报

  汇报:每组数中的两个数相乘,积都等于1.

  归纳总结:像刚才这样的一组数叫做互为倒数。乘积是1的两个数互为倒数。(板书)

  3.让学生总结倒数的特点.

  分子、分母的位置 互相颠倒 倒数指的是 两个数 之间的关系。

  4.让学生来说说课堂活动中1题(1)。(明确:两个数互为倒数)

  三.训练探索 求 的倒数

  ①学生思考,小组交流。

  ②集体汇报

  学生板演:让一个学生写出来.

  学生讲解:让另一个学生总结求倒数的方法.

  总结:求一个数的倒数, 只要把这个数的分子、分母调换位置。

  四.合作探究

  1.提问:整数有没有倒数,如果有该怎么求,举倒分析。

  ①学生:小组交流,举倒说明。

  ②集体汇报

  2.提问:0和1的倒数是多少?

  ①学生思考,小组交流。(教师提示:从分数、除法之间的关系去考虑。)

  ②集体汇报

  ③总结:0没有倒数,因为除法中0不能作除数,除数相当于分数中的分母,所以0不能作分母。因此0没有倒数,1的倒数是它本身。

  总结(板书) 求倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  五,课堂练习:让学生做教材31页“填一填”

  ①学生独立完成。

  ②集体订正。

  六.出示投影,探究小数的倒数。

  ①学生思考,小组交流。②集体汇报

  ③教师总结:小数也有倒数,与小数乘积为1的数就是小数的倒数。

  七.出示投影,探究带分数的倒数。

  ①学生思考,小组交流。

  ②集体汇报

  ③教师总结:带分数要先转化成假分数后,把分子、分母调换就是这个带分数的倒数。

  八.出示投影,达标检测。

  把互为倒数的两个数连线。

  【当堂检测】

  做练习八(1、2、3)题

  【拓展延伸】

  1.假分数的倒数( )

  A.大于1 B 小于1 C 小于或等于1

  2.一个数的倒数小于1,这个数( )1

  A 大于 B 小于 C 等于

  九、课堂小结:通过这两节课的学习,你有什么收获?

  学生畅谈收获心得,提出自已还不理解的地方,集体帮助解答。

  板书:

  1、乘积是1的两个数互为倒数。

  2、求一个数的倒数, 只要把这个数的分子、分母调换位置。

  3、0没有倒数,1的倒数是它本身

  【教师反思】

倒数的认识教案15

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。

  教学目的要求:

  认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

  教学重点难点:

  掌握求倒数的方法,能熟练得求一个数的倒数。

  教学过程:

  一、导入新课

  问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

  二、新授

  教学例题

  (1)出示例7

  下面的几个分数中,哪两个数的乘积是1?

  (2)学生回答。

  (3)引出概念。

  乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。

  (4)学生举例来说。进行及时的评议。

  (5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?

  归纳方法

  小组讨论:

  观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?

  全班交流。

  求一个数的倒数时,只要把这个数的'分子和分母调换位置即可。

  问:5的倒数是几?1的倒数是几?

  学生回答,并说原因。

  追问:0有倒数吗?为什么?

  指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

  除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  教学“练一练”

  学生回答。

  提醒学生正确地书写格式。

  三、巩固练习。

  1、做练习六第17题

  学生填书上后,集体订正,并说说是怎样想的。

  2、做练习六第18题

  指名口头回答,选择两题让学生说说思考的过程。

  3、做练习六第19题

  重点引导学生讨论每一组数的规律。

  4、做练习六第21题

  5、做思考题

  联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?

  四、全课总结

  这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

  五、作业

  练习六第20题

  板书设计:

  (略)

【倒数的认识教案】相关文章:

认识倒数教案11-14

倒数的认识教案02-11

倒数的认识教案15篇02-19

《倒数的认识》数学教案设计08-05

顺数与倒数教案09-22

大班数学顺数和倒数教案07-09

认识比教案12-06

《10的认识》教案02-25

认识标志教案03-09