范文资料网>反思报告>教案大全>《《最小公倍数》教案

《最小公倍数》教案

时间:2023-03-05 18:22:07 教案大全 我要投稿

《最小公倍数》教案

  作为一名优秀的教育工作者,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。如何把教案做到重点突出呢?下面是小编为大家整理的《最小公倍数》教案,欢迎大家分享。

《最小公倍数》教案

《最小公倍数》教案1

  一、教材简析

  《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。

  二、教学目标及教学重、难点

  根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:

  2.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。

  3.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。 教学重点: 公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。

  教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

  三、设计理念

  数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本1.让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。 思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。

  四、教学过程

  (一)故事引入 感知概念

  出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。

  根据学生的汇报,教师完成板书:

  巴依老爷的休息日 4、8、12、16、20、24、28 ??

  账房先生的休息日 6、12、18、24、30 ??

  他们共同休息日 12、24??

  最早的休息日12

  【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。

  (二)加深理解 总结方法

  1.公倍数和最小公倍数的概念教学

  从“巴依老爷的休息日” 、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、 “4和6的最小公倍数”)。教师完成板书

  巴依老爷的休息日(4的倍数) 4、8、12、16、20、24、28 账房先生的休息日(6的倍数) 6、12、18、24、30 ?? 他们共同休息日(4和6的公倍数) 12、24

  最早的休息日 (4和6的最小公倍数) 12

  【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。

  2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的'这一部分表示什么呢?(课件出示集合圈的动态过程)

  【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。

  (三)巩固运用

  再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)

  出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?” 问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

  【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。

  (四)解决问题 深化理解

  在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)

  【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。

《最小公倍数》教案2

  教学目标

  1.掌握公倍数、最小公倍数两个概念.

  2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.

  教学重点

  建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.

  教学难点

  理解求两个数最小公倍数的算理.

  教学步骤

  一、铺垫孕伏.

  1.导入:这节课我们开始学习有关最小公倍数的知识.

  (板书:最小公倍数)

  2.复习倍数的概念.

  二、探究新知.

  教学例1

  例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

  4的倍数有:4、8、12、16、20、24、28、32、36……

  6的倍数有:6、12、18、24、30、36……

  4和6的公倍数有:12、24、36……

  其中最小的一个是12.

  1、学生分组讨论总结公倍数、最小公倍数的意义.

  2、用集合图表示4和6的公倍数.

  3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

  明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.

  4、反馈练习.

  把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.

  明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.

  (二)教学例2

  引入:我们用分解质因数的方法求两个数的最小公倍数.

  例2:求18和30的最小公倍数.

  1、用短除式分别把18和30分解质因数.

  板书:18=2×3×3

  30=2×3×5

  教师提问:18的倍数必须包含哪些质因数?

  (18的倍数包含18的所有质因数)

  30的倍数必须包含哪些质因数?

  (30的倍数包含30的所有质因数)

  18和30的.公倍数必须包含哪些质因数?

  (既要包含18的所有质因数,又要包含30的所有质因数)

  2、观察集合图:18和30的最小公倍数应包含哪些质因数?

  教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.

  3、小组讨论:如果少一个或多一个质因数行不行?

  教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.

  板书:

  18和30的最小公倍数是2×3×3×5=90

  4、反馈练习.

  (1)先把下面两个数分解质因数,再求出它们的最小公倍数.

  30=()×()×()

  42=()×()×()

  30和42的最小公倍数是()×()×()×()=()

  (2)A=2×2B=2×2×3

  A和B的最小公倍数是()×()×()=()

  (3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?

  可能错在哪里?

  5、求最小公倍数的一般书写格式.

  ①引导学生把两个短除式合并成一个.

  板书:

  ②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.

  ③反馈练习:求30和45的最小公倍数.

  ④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.

  ⑤反馈练习:求下面每组数的最小公倍数

  6和824和20xx和2116和72

  三、全课小结.

  今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.

  四、随堂练习

  1.填空.

  A=2×2×5

  B=()×5×()

  A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.

  2.判断.

  (1)两个数的积一定是这两个数的公倍数.()

  (2)两个数的积一定是这两个数的最小公倍数.()

  五、布置作业.

  求下面每组数的最小公倍数.

  12和1530和4036和5422和33

《最小公倍数》教案3

  课时:1

  教学准备:

  教学目标:1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。

  2、通过输理、比较,建立相关概念的关系。

  3、、在游戏、应用中体验数学的趣味性。

  基本教学过程:

  一、一、基本练习

  1、复习找因数、公因数的方法:

  练习第一题。

  学生填写后,说说你是怎么想的。巩固找公因数的方法。

  2、复习约分的方法:

  练习第二题先约分,再连线。

  二、运用知识模型:

  1、复习分数的意义、约分等知识的综合运用。

  第3题。

  让学生自己用分数表示,并交流自己的思考方法。

  2、第4题。

  先让学生找出分数,并说说自己的思考方法?

  3、第5题。

  本题开放性强,学生可以自由分割,并用分数表示。

  三、思考题:

  本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。

  四、实践活动:

  先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。

  四、总结:教学反思:

  内容:公倍数与最小公倍数

  课时:1

  教学准备:

  教学目标:1、结合具体情境,体会公倍数和最小公倍数的应用。理解公倍数和最小公倍数的意义。

  2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  基本教学过程:

  一、一、创设活动情境,进行找倍数活动:

  二、出示题目和8月份的日历:

  1、谁能说一说“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符号圈出两人去少年宫的日子。

  2、把这些数写下来。

  二、自主探索,总结找两个数的'公倍数的方法:

  1、观察这些数有什么特点?

  2、再观察两人同时去少年宫的日子有什么特点?

  3、师总结:揭示公倍数和最小公倍数的概念。

  填一填:第48页

  ①学生尝试找6和9的公倍数和最小公倍数,并利用集合进一步加深对公倍数意义的理解。

  ②学生讨论交流找公倍数的基本方法。

  ③还有其他方法吗?(鼓励学生用其他方法找公倍数)

  4、师总结:找公倍数和最小公倍数的方法

  三、拓展引思:

  1、第49页练一练

  第一、二题

  让学生独立填一填,再交流。

  教学反思:

  ①15和5014和3512和484和7

  说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。

  注意:教师出题时,数字不要太大,要注意把握难度要求。

  ②练一练,第42页第1题。第2题。第3题。

  ③第43页第4题:

  让学生找出这几组数的公因数后,说说有什么发现?

  ④第43页第5题:

  ⑤数学探索:

  三、总结。

  分数的大小

  教学目标

  1、探索分数大小比较的方法,会正确比较两个分数的大小。结合具体情境引导学生用分数描述有关现象,理解通分的含义探索并掌握通分的方法。

  2、进一步加深对分数意义的理解,培养学生的发散思维能力。

  3、激发学生的创新乐趣,培养学生勇于思考、敢于求异的创新精神,使学生感受比较与分类、猜想与验证在解决问题中的作用,并逐步学会用此种方法处理、解决问题。

  教学过程

  (一)、创设情景谈话激趣

  师:同学们,你们喜欢中央电视台李咏主持的什么娱乐节目?

  生:非常6+1幸运52

  师:今天就让幸运带给我们五年级二班每个人好吗?在幸运52的幸运擂台挑战之前要知道我们班的课堂比赛规则:

  A、把我们班分成四大组,如果哪一组回答问题出色,或者回答问题积极相应加上两颗星。

  B、如果哪一组不听人家的回答则倒扣一颗星。

  C、最后看哪一组胜利相应进行奖励。

  师:我们已经学习了分数的意义和分数的基本性质这些知识,如何运用这些知识来比较分数的大小呢?今天我们一起来研究研究。(板书:分数大小比较)

《最小公倍数》教案4

  教学目标

  (1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。

  (2)综合运用知识,进一步沟通知识间的联系。

  教学重点、难点

  重点、难点:能够根据不同,灵活运用简捷的方法。

  教具、学具准备

  教 学过程

  备 注

  一、基本练习

  1、填空。(课本第67页第7题)

  (1)9和27这两个数,()能被()整数,()是()的倍数,()是()的约数。

  (2)20以内既是偶数又是素数的数是(),既是奇数又是合数的数是()

  (3)在4、9和16中,成互质数的两个数有()和();()和()。

  (4)三个素数的最小公倍数是42,这三个素数是()、()和()。

  (5)如果甲数=2×3×5,乙数=2×3×7,那么甲数与乙数的最大公约是(),最小公倍数是()。

  学生先填在书上,再集体交流讨论,注意让学生说说思考方法。

  2、很快说出下面每组数的最大公约数和最小公倍数。

  11和49和65、10和20

  16和1580和20年5、6和7

  说的过程中注意让学生说出思考的过程及理由。

  3、求下面各组数的`最大公约数和最小公倍数。

  80和10015、8和30

  25和330、60和75

  19和388、9和10

  让学生用短除法做,选做三题,交流时注意用短除法要注意的地方,同时让学生说说还有其他的思考方法。

  二、综合练习

  1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?

  整数自然数整除约数倍数

  奇数偶数合数素数质因数

  公约数最大公约数公倍数最小公倍数

  教学过程

  备 注

  例2:2和8都是自然数,8能被2整除,8是2的倍数。

  2、动脑筋:下面每组数中,你能找出不同类的数吗?

  (1)1473.82345

  (2)21216223647

  (3)23792943

  学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励.

  3、猜一猜老师家的电话号码.

  老师家的电话号码是七位数,排列如下:

  ()最小的素数

  ()7的最大约数

  ()8的最小倍数

  ()最小的自然数

  ()最小的合数

  ()最小的一位奇数

  ()既不是素数也不是合数的数

  三、课堂

  师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?

  四、作业

  1、课本上第9、10题中剩余题目各选一列。

  2、《作业本》

  教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数

《最小公倍数》教案5

  教学目标:

  1、理解公倍数,最小公倍数的意义.

  2、会用列举法,分解质因数,短除法求两个数的最小公倍数.

  3、会求是互质数或有倍数关系的两个数的最小公倍数.

  4、在知识的探究过程中,培养大胆质疑的习惯.

  教学过程:

  一、导入:

  同学们,昨天我们班在舞台旁30米长的花带上每隔2米种一株桂花,树种的太密了,下午要重种,改成每隔3米种一株。现在大家出出主意,下午怎样种才能又快又好的完成任务呢?我一边说一边把课前准备好的图片分给各小组,让各小组讨论交流后交由小组长汇报本组的方案。各组讨论后出现以下三种情况:

  1、全部拔起,重新测量后再种

  2、头尾不动,把中间的全部拔起,重新测量后再种

  3、除头、尾不动外,还有6米、12米、18米、24米共六株不用拔,只需拔10株,在每两株中间种一株,这样重种5株就可以啦。

  师:刚才有4组采用了第三种方案该种的,这种方案确实比前两种方案要好,现在请你们说说是怎么发现这些株数不用重种的?

  生:通过测量的方法发现的。还发现了6、12不仅是2的倍数同时也是3的倍数,所以觉得是2和3的公倍数就都不用动。

  师:你们怎么想到“公倍数”这么个好听的名字的?

  生:我们前面学习的几个公有的因数叫公因数,最大的叫最大公因数。那现在两个公有倍数就叫公倍数,30是最大的就叫最大公倍数。

  师:大家还有不同的意见吗?

  生:(议论纷纷)这个不是最大的,还有更大的。。。。

  师:确实如此,大家真能干!这节课我们就一起来探究这个问题。(出示课题:公倍数最小公倍数)

  师:谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数.

  二、探究:

  看了这个课题,你想在这节课中了解些什么请学生写在纸上,并贴到黑板上.

  (为什么不求最大公倍数求最小公倍数有哪些方法 哪些情况下可以很快说出两个数的`最小公倍数是几 等)

  四人一组合作解决1~2个问题,举例说明,组长笔录.可以翻书请教,在P.69~71.

  成果汇报:

  (1)公倍数有多少个 (公倍数的个数是无限的,没有最大公倍数.)

  (2)求最小公倍数的几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的内容:

  ②分解质因数:如:12与30的最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数 30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积.

  [12,30]=2×3×2×5=60

  从这两个分解质因数的式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公因数 各自独有的质因数

  最小公倍数是两个数的最大公因数与各自独有质因数的乘积.

  ③短除法:如:36和45的最小公倍数

  3 36 45 用公因数去除

  3 12 15

  4 5 除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公因数比较有什么异同之处

  (相同处:都用公因数去除, 除到商是互质数为止.

  不同处:求最大公因数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数.)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数.

  4、总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

《最小公倍数》教案6

  教学目标

  1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

  2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

  3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

  教学重难点

  重点难点:求两个数最小公倍数的方法。

  教学过程

  (一)、小组长汇报“前置小研究”完成情况怎样求3和2的最小公倍数?

  第一步:3的倍数有:()

  2的倍数有:()

  第二步:3和2的公倍数有:()

  第三步:3和2的最小公倍数是:()

  (二)、小组交流、探讨“前置小研究”

  1、要求小组内互相解决出现的错误,并能说说自己的方法;

  2、要求学生说说:

  (1)什么是公倍数和最小公倍数?

  (2)两个数的公倍数的个数是怎样的?

  (三)引课:今天我们就来探究最小公倍数(板书课题)

  出示书例1题一种墙砖长3 dm,宽2 dm。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?

  1.请仔细看看小明家装修的要求,你获得了哪些有价值的信息?

  ①要用这种长是3dm,宽是2dm的墙砖铺一个正方形。

  ②使用的墙砖必须都是整块的,不能切割开用半块的。

  ③问题是铺好的正方形的边长可以是多少分米,最小是多少分米?

  2.我们先来研究正方形的边长可以是多少分米。你有办法解决这个问题吗?

  3.学具:长是3dm,宽是2dm的长方形纸片

  动手来实践。

  (1).要求:

  ①用长方形纸片代替墙砖拼一个正方形。

  ②和你的同桌进行交流,说说你摆出的正方形边长是多少。

  (2).探究结果交流。

  ①我第一行摆了2个长方形,摆了这样的3行,拼成了一个边长是

  6dm的正方形。

  ②我第一行摆了4个长方形,摆了这样的6行,拼成了一个边长是

  12dm的正方形。

  你还能拼成不一样的大正方形吗?

  学生进行讨论:

  (3).如果我们有足够多的小长方形的话,还可以拼出边长是其他数的正方形吗?

  (4).用这样的小长方形可以拼出边长是18dm,24dm,30dm……的正方形吗?小组内讨论一下。

  (5).我们长2dm、宽3dm的长方形可以拼出多少个边长不一样的大正方形呢?说说理由。

  (6).用这样的长方形可以拼成边长是8dm的正方形吗?说说理由。

  ①不能,因为8是2的倍数,不是3的倍数,拼不成边长是8的正方形。

  ②实际动手操作。

  (7).在拼成的所有正方形里边长最小是几分米?你怎么知道的?

  (8).总结提升:通过解决这个问题你有哪些收获?

  ①求3和2的最小公倍数,还可以用用集合圈的方法表示

  ②全班交流并板书。

  3的倍数

  2的倍数

  可以铺出边长是6 dm,12 dm,18 dm,···的.正方形,最小的正方形边长是6 dm。

  6,12,18,···是3和2公有的倍数,叫做它们的公倍数。其中,6是最小的公倍数,叫做它们的最小公倍数。

  4、考考你:用新学的知识解决问题:完成P89做一做

  5、教学例2:怎样求6和8的最小公倍数?

  (1)学生独立完成,全班交流。

  (2)学生交流方法有(交流时课件演示)

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6的倍数:6,12,18,24,30,36,42,48,

  8的倍数:8,16,24,32,40,48,

  6和8公倍数:24,48,

  6和8的最小公倍数:24

  ②用图表示也很清楚。

  ③6的倍数中有哪些是8的倍数呢?

  你还有其他方法吗?和同学讨论一下。

  教师介绍:

  ①大数翻倍法:8,16,24,

  6和8的最小公倍数:24

  ②分解质因数法:8=2×2×2

  6=2×3

  8和6的最小公倍数= 2×2×2×3 = 24

  8和6的最小公倍数包括8和6的公有质因数和各自独有的质因数的乘积。

  6、通过观察,想一想:

  ①两个数的公倍数的个数是怎样的?

  ②两个数的公倍数和它们的最小公倍数之间有什么关系?

  5、考考你会求两个数的最小公倍数吗?

  完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现?

  3和6 2和8 5和6 4和9

  7、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  8、我能很快说出每组数的最小公倍数。

  8和9()24和8()30和5()4和12()36和4()48和6()17和13()14和15()23和24()

  (四)加强应用,巩固练习

  1.有一堆糖,4颗4颗地数,6颗6颗地数,都能刚好数完。这堆糖至少

  有多少颗?

  2.如果这些学生的总人数在40人以内,可能是多少人?

  3.李阿姨给月季和君子兰同时浇水,至少多少天以后要再给这两种花同时浇水?

  知识应用:练习

  布置作业:

  作业:第72页练习十七,第10题、第11题。

  (五)全课总结:通过这节课的学习,你有什么收获?

  板书设计

  最小公倍数

  公倍数:两个数公有的倍数

  最小公倍数:两个数公有的倍数中最小的那个数

  找“最小公倍数”的方法:

  1、一般情况:

  先写出一个数的倍数,再写出另一个数的倍数,从两个数的公倍数中找出两个数的最小公倍数

  2、特殊情况:

  ①当两数成倍数关系时,这两个数的最小公倍数就是较大的数;

  ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。

《最小公倍数》教案7

  教学要求:

  学会用短除法求两个数的最小公倍数

  掌握求最大公因数和求最小公倍数的区别

  教学重点:

  学会用短除法求两个数的最小公倍数

  掌握求最大公因数和求最小公倍数的区别

  课前准备:

  小黑板

  教学过程:

  一、复习

  (1) 写出3组互质数

  (2) 找出每组数的最小公倍数

  6和9 25和10

  二、学习用短除法求最小公倍数

  3 6 9 5 25 10

  2 3 5 2

  还能再除下去吗?

  6 和9的最小公倍数是:3×2×3=18

  25和10的最小公倍数是:5×5×2=50

  练习:求每组数的最小公倍数

  12和30 36和54 7的14

  24和36 14和56

  三、比较用短除法求最大公因数与最小公倍的区别

  分别求30和45的最大公因数和最小公倍数

  比较:用短除法求两个数的最小公倍数和最大公因数的什么相同点?不同点?

  小结:相同点:用短除法,除到互质数为止

  不同点:最大公因数是把所有的除数相乘;最小公倍数是把除数和商相乘。

  四、教学求两个数的最小公倍数的两种特殊情况

  两个数成倍数关系

  15和30 12和36 8和4

  求这两个数的最小公倍数?

  说说你的发现?

  五、观察

  两个数是什么关系?

  最小公倍数与这两个数的`什么关系?最大公 因数与这两数有什么关系?

  1.两个数互质

  拿出复习中同学们写出的互质数

  小组合作讨论研究

  如果两个数是互质数,它们的最小公倍数与最大公因数有什么特点呢?

  2.练习

  直接说出每组数的最小公倍数与最大公因数

  3和7 8和9 11和4

  4和28 4 和25 33和11

  7和63 48和12 42和56

  3.作业:求每组数的最小公倍数与最大

  公因数

  15和20 7和5 12和16

  5和35 28和14 34和51

《最小公倍数》教案8

  教学内容 第十册数学P72—74最小公倍数

  教学目标

  1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。

  2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。

  3、培养学生的积极学习情感,学会欣赏他人。

  教学过程

  一、再现原有知识结构

  1、用短除法求30与45的最大公约数

  独立完成,一人板演,集体订正。

  师提问:怎样用短除法求两个数的最大公约数?

  (评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)

  二、构建新的`知识结构

  1、揭示课题

  今天我们来研究最小公倍数。(板书课题)

  2、明确意义

  师:你认为什么是最小公倍数?

  生1:两个数公有的最小的倍数。

  师:说的很好,你很会扩写。(生笑)

  生2:两个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。

  生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。

  生说完师出示,齐读。

  (评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)

  3、探讨求法

  出示:求4与5的最小公倍数。

  师:你认为可以怎样求两个数的最小公倍数?

  生1:用短除法。(师板书:短除法)

  师:oh,你会吗?

《最小公倍数》教案9

  课题:找最小公倍数

  教学目标:

  1.结合具体情境,体会公倍数和最小公倍数的应用,并会利用例举法等方法找出两个数的公倍数和最小公倍数。

  2.培养学生分析归纳能力以及主动探究的精神。

  教学重点:理解两个数的公倍数和最小公倍数的意义

  教学难点:探究赵公倍数和最小公倍数的方法

  教具:多媒体课件

  教学过程:

  一.创设情境、引入新课

  1.课件展示蜜蜂采蜜

  师:同学们看看这是什么?

  生:蜜蜂。

  师:蜜蜂在干嘛呀?

  生:在采蜜。

  师:嗯,是的。那你们看现在蜜蜂王国日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来都非常拥挤,这可怎么办呢?

  (生自由发表意见,各抒己见)

  2.师:现在呢,有只小蜜蜂呢提出了这么一计策,把这些蜜蜂分成两个组,一组四分钟回来一次,一组六分钟回来一次,你们觉得这个问题完全解决了吗?同学们想一想。

  (片刻之后)师:同学们把书翻到第六十页,在这个表中把4的倍数用标出来,用 把6的倍数标出来。

  两分钟之后展示一位同学所标出来的。

  3.师:那4的倍数有哪些?

  生:4、8、12、16、20、24、28、32、36、40、44、48。

  师:那6的倍数又有哪些呢?

  生:6、12、18、24、30、36、42、48。

  又标了的有哪些?

  生:12、24、36、48。

  师:12、24、36、48既是4的倍数又是6的倍数,它们就叫做4和6的公倍数。

  师:那么我们的两组蜜蜂在这些时候又会碰上一起回家。那它们最快是在什么时候相遇呢?

  生:12分钟。

  师:12是4和6的最小公倍数。

  4.师:刚才我们是在50以内(包括50)的数中找4和6的倍数,如果继续找下去,还有吗?有多少个?

  生:有,有无数个。

  师:你能找出最大的一个吗?

  生:不能。

  师:4和6没有最大的公倍数,但有最小的公倍数,它就是我们这节课要学习的内容——最小公倍数。

  二.巩固练习

  1.师:现在如果把蜜蜂分成两组,一组6分钟回来一次,一组9分钟

  回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)

  师:50以内6的倍数有哪些?

  生:6、12、18、24、30、36、42、48。

  师:50以内9的倍数又有哪些?

  生:9、18、27、36、45。

  师:50以内6和9的公倍数有哪些?

  生:18和36。

  师:它们的最小公倍数是多少呢?

  生:18。

  师:我们的两组蜜蜂最快在18分钟的时候相遇了。

  2.小猴子要过河了,小猴子现在要做从三块石头上走过去,可是石头都有密码的,你们可以帮助小猴子顺利过河吗?

  (出示课件,50以内9的.倍数、50以内5的倍数、50以内9和5的公倍数)学生 独立完成再汇报。(书上61页练一练的第2题) 师:刚刚我们都是用的什么方法来找最小公倍数的?

  生:列举法。

  师:那现在还有一种方法找最小公倍数,短除法。

  2 18 24

  9 12

  3 4

  18和24的最大公因数就是:2×3=6.

  18和24的最小公倍数就是:2×3×3×4=72。

  3.求下列数的最小公倍数

  3和6 10和89和4

  4.联系实际,解决问题

  师:看看,这是什么?

  生:跑道。

  师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。

  (1)我跑一圈用6分钟

  (2)我跑一圈用4分钟

  (3)我跑一圈用8分钟

  师:你能提出问题吗?

  生1:他们同时出发男孩和女孩最快什么时候相遇?

  生2:他们同时出发男孩和老师最快什么时候相遇?

  生3:他们同时出发老师和女孩最快什么时候相遇?

  (独立完成)

  三.本堂小结

  师:通过这节课的学习你有什么收获?

  生先谈收获师再总结

  1.同学们都很好的掌握了用列举法找两个数的公倍数和最小公倍数的方法。

  2.学会了用短除法求两个数的最小公倍数。

《最小公倍数》教案10

  教学内容:

  人教版义务教育教科书数学五年级下册第68—69页。

  教学目标:

  1.学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。

  2.通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  3.在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。教学重点:理解公倍数和最小公倍数的含义。

  教学难点:

  用不同的方法求两个数的公倍数和最小公倍数。

  教学过程:

  一、游戏导入

  同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。

  师:想一想,他们为什么站起来两次?

  生:因为他们既是4的倍数也是6的倍数。

  师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。

  二、自主探索

  (一)公倍数和最小公倍数的概念

  1.回忆学习方法

  师:请同学们回忆,我们是怎样研究公因数的?

  生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。

  师:我们就用这样的方法来研究游戏中4和6的公倍数问题。

  2.自主探究

  学生在练习本上独立找出4和6的.公倍数。

  3.汇报交流

  学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)

  4.小结概念,课件演示集合图。

  12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。

  设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。

  (二)求两个数的公倍数和最小公倍数的方法。

  师:请用你想到的方法找出6和8的公倍数和最小公倍数。

  (1)学生独立完成,全班交流。

  (2)学生交流方法有:

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6的倍数:6,12,18,24,30,36,42,48,……

  8的倍数:8,16,24,32,40,48,……

  6和8公倍数:24,48,……6和8的最小公倍数:24

  ②用集合图表示也很清楚。

  ③6的倍数中有哪些是8的倍数呢?或者8的倍数中有哪些是6的倍数呢?

  师:这么多方法,你喜欢哪一种?

  通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?

  练习:18和2415和25

  三、课堂练习:

  找出下面每组数的最小公倍数,看看有什么发现?

  3和62和85和64和93和95和10

  交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  你能举个例子吗?

  四、独立作业:

  数学书71页2题

  五、课堂小结:

  师:今天学习了什么知识?你有什么收获?

  生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。

  找两个数公倍数和最小公倍数的方法等等。

  板书设计:

《最小公倍数》教案11

  教学内容:教科书五年级上册第81——82页及练习。

  教学目标:

  1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。

  2、了解最小公倍数,学会用短除法求两个数的最小公倍数。

  3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。

  教学重点:学会用短除法求两个数的最小公倍数。

  教学过程:

  一、课前活动——对口令

  师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。

  2、对出一个数,它既是2的倍数也是3的倍数。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?

  请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。

  师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。

  出示教材上的情境图。

  师:从两个人的对话中了解到哪些数学信息?

  生1:聪聪用了5/6小时。

  生2:红红用3/4小时就打完了。

  师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。

  学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?

  师:谁来说说是怎样比较的?谁打得快呢?

  学生交流,教师进行板书。

  生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。

  5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24

  20/24>18/24,所以5/6>3/4。

  红红打得快。

  生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。

  5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12

  10/12>9/12,所以5/6>3/4。

  ……

  如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。

  师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?

  学生可能有不同的表达方式,概括一下,应有如下回答:

  ●相同的地方

  (1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。

  (2)两种方法通分时用的分母12和24都是6和4的公倍数。

  教学预设

  ●不同的地方

  (1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。

  (2)24是12的2倍。

  ……

  师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的`公倍数。

  学生自己找,教师巡视。

  师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数

  4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,

  师:如果让你继续找下去,4的倍数还有没有?用什么表示?

  生:还有无数个,用省略号表示。

  生:6的倍数有:6,12,18,24,30,36,42,48,

  师:如果让你继续找下去,6的倍数还有没有?用什么表示?

  生:还有无数个,也用省略号表示。

  生:然后找4和6的公倍数有:12,24,36,48,……。

  教师根据学生的回答出示课件。

  师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?

  学生可能会说:

  生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。

  师:60后面还有没有?还有多少个?

  生:还有无数个,用省略号表示。

  师:有没有最大公倍数?

  生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。

  师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?

  生:12。

  师:还有比12小的公倍数吗?

  生:没有了。

  师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)

  师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。

  学生之间互相交流。

  教师引导学生出概念(出示课件)让学生读一读。

  师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)

  用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。

  板书设计:

《最小公倍数》教案12

  【教学内容】:

  人教版五年级下册教科书第88—90页内容。

  【设计理念】:

  数学于生活,有作用于生活。在本堂课的教学,我把数学与生活紧密的联系在一起,从而构建一种生活化的数学课堂。让学生根据现实生活中一些能够反映公倍数、最小公倍数的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验,进而激发学生兴趣,去解决这些实际问题,真切地体会到数学与外部生活世界的'联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。真正达到“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。

  【教学目标】:

  1、知识与技能:通过创设具体情境(三个情景片断)和操作活动,使学生认识并理解公倍数和最小公倍数的概念,初步了解两个数的公倍数和最小公倍数在现实生活中的应用,会找两个数的公倍数和它们的最小公倍数。

  2、过程与方法:通过自主探索解决问题的方法,使学生经历探索找两个数的公倍数和最小公倍数的过程,鼓励学生思考多样化,简洁化,进行有条理的思考。

  3、情感态度价值观:在自主探索与合作交流的过程中,进一步发展与同伴的合作交流能力,获得成功的体验。使学生感受到数学于生活,体会公倍数和最小公倍数在生活中的实际价值。

  【教学重点】:

  1、理解公倍数与最小公倍数的概念

  2、能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教学难点】:

  能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

  【教具、学具准备】:

  多媒体、日历。

《最小公倍数》教案13

  第三课时

  教学内容:求三个数的最小公倍数

  教学目标:

  使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。

  教学过程:

  一、复习

  什么是公倍数、最小公倍数

  怎样求两个数的最小公倍数

  求两个数的最小公倍数与最大公约数有什么联系

  当两个数是倍数关系时,大数就是这两个数的`最小公倍数,小数就是这两个数的最大公约数。

  当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。

  二、揭示课题

  这节课我们学习求三个数的最小公倍数。

  三、教学新课

  1、例3求12、16和18的最小公倍数。

  2、学生自学完成。

  3、对不懂的问题提出疑问。

  4、注意:用短除法求三个数的最小公倍数时,先要用三个数的公约数去除,然后再用任意两个数的公约数去除。最后的结果要两两互质。

  5、试一试

  求15、30和60,3.4和7的最小公倍数。

  计算后,你发现了什么?

  (1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的最小公倍数。

  (2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。

  四、巩固练习

  书本第57-58页

  五、反馈

  六、布置作业

  反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。

《最小公倍数》教案14

  教材分析:

  该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

  学情分析:

  五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  教学目标:

  1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

  2、让学生经历探索和发现数学知识的过程,积累数学活动的.经验,培养学生自主探索合作交流的能力。

  3、渗透集合思想,培养学生的抽象概括能力

  教学重点:

  公倍数与最小公倍数的概念建立。

  教学难点:

  运用公倍数与最小公倍数解决生活实际问题

  教法学法:

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

  教学过程:

  一、任务导学

  师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

  师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

  师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

《最小公倍数》教案15

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长3厘米、宽2厘米的长方形纸片16张,边长6厘米和8厘米的正方形纸片;练习四第4题的方格图、红棋和黄棋。

  教学过程:

  复习

  今天我们所学的知识与倍数有关,这在四年级我们已经学过了,同学们还记得吗?

  那谁能连续的说几个2的倍数?有什么特征?3的倍数呢?

  看来大家四年级的知识掌握的不错,那么今天我们就再来继续研究关于倍数的知识。

  一、经历操作活动,认识公倍数

  1、操作活动

  提问:(在投影仪上摆出长3厘米、宽2厘米的长方形纸片,以及边长6厘米和8厘米的正方形纸片)用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米和正方形,能铺满哪个正方形?请大家猜猜看

  拿出手中的图形,动手拼一拼。

  学生独立活动后,指名在黑板上用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米的正方形。

  提问:通过刚才的活动,你们发现了什么?(用上面的长方形纸片可以正好铺满边长6厘米和正方形,但不能正好铺满边长8厘米的正方形)

  引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(在边长6厘米的正方形下面板书:6÷3=2,6÷2=3)

  铺边长8厘米的.正方形呢?每条边都能正好铺完吗?(在边长8厘米的正方形下面板书:8÷3=2......2,8÷2=4)

  2、想像延伸

  提问:根据刚才铺正方形过程,在头脑里想一想,用长3厘米、宽2厘米的长方形纸片还能正好铺满边长多少厘米的正方形?在小组里交流。

  生可能的想法:

  ⑴、能正好铺满边长12厘米、18厘米、24厘米......的正方形。

  在学生回答后,提问:你是怎么想的?(引导学生明确:12、18、24......除以2和3都没有余数)

  ⑵、能正好铺满的正方形,边长的厘米既是2的倍数,又是3的倍数。

  如果学生说不出这一点,可提问:6、12、18、24......这些数与2有什么关系?与3呢?

  3、揭示概念

  讲述:6、12、18、24......既是2的倍数,又是3的倍数,它们是2和3的倍数。(板书:公倍数)

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号来表示。

  引导:用长3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?(8不是2和3的公倍数)为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,然后在小组里交流。

  生可能想到的方法:

  ⑴依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?

  ⑵、先找出6和倍数,再从6的倍数中找出9的倍数。

  ⑶、先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:第⑵种和第⑶种方法有什么相同的地方?你觉得哪一种方法简捷一些?

  2、明确6和9的最小的公倍数是18后,指出:18就是6和9的最小公倍数。(完成课题板书)

  3、用集合图表示。

  说明:我们可以用下图表示两个数的公倍数。先出示一个圈,表示6的倍数。想一想,里面可以填哪些数?旁边一个圈,表示9的倍数。想一想,里面可以填哪些数?指出:6和9的公倍数要填在两个圈相交的部分。想一想,里面应该填哪些数?

  引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、做“练一练”

  要求:(出示数表)先在2的倍数上画“△”,在5的倍数上画“○”,然后填空。

  集体交流:2和5的公倍数有什么特点?(是10的倍数,个位是0的自然数)

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、做练习四的第1题

  要求:把50以内6和8的倍数、公倍数分别填在题目下面的圈里,再找出它们的最小公倍数。

  提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提条件呢?

  2、做练习四第2题

  要求:先在表中分别写出两个数的积,再填空。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、做练习四的第3题

  要求:自己找出每组数的最小公倍数。

  集体交流,说说是怎样找的,让学生进一步掌握用列举法找两个数的最小公倍数。

  四、全课小结

  提问:今天学习的内容是什么?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

  引导:你还有什么疑问吗?

  五、游戏活动

  要求:下面我们来做个游戏。出示练习四第4题:红棋每次走3格,黄棋每次走4格。你能在两种棋都走到的方格里涂上颜色吗?在小组里先玩一玩,再想一想。

  提问:涂色的方格里写的数与3和4有什么关系?

【《最小公倍数》教案】相关文章:

最小公倍数教案01-20

最小公倍数优秀教案03-07

精选《最小公倍数》教案四篇10-18

精选《最小公倍数》教案三篇04-05

公倍数与最小公倍数教案02-26

【热门】《最小公倍数》教案四篇04-15

《最小公倍数》教案汇总五篇04-12

有关《最小公倍数》教案三篇04-14

《最小公倍数》教案范文9篇04-17