七年级数学教案15篇
作为一位杰出的教职工,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。来参考自己需要的教案吧!以下是小编收集整理的七年级数学教案,仅供参考,大家一起来看看吧。
七年级数学教案1
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:
按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的`标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。
思考:
问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。
小结与作业
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
七年级数学教案2
教学目标:
1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教学具准备:
多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844。43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的'海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844。43米或8844。43米。
吐鲁番盆地的海拔可以记作:—155米。(板书)
(2)小结:以海平面为界线,+8844。43米或8844。43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844。43也可以写成8844。43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是xxxx。水结冰时的温度是xxxx。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七年级数学教案3
教学目标
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点 数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动) 设计理念
设置情境
引入课题 教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的.马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。
合作交流
探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解
寻找规律
归纳结论 问题3:
1, 你能举出一些在现实生活中用直线表示数的实际例子吗?
2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4, 每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结 请学生总结:
1, 数轴的三个要素;
2, 数轴的作以及数与点的转化方法。
本课作业 1, 必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
七年级数学教案4
教学目标
1.知识与技能
①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.
2.过程与方法
经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.
3.情感、态度与价值观
通过联系与发展、对立与统一的.思考方法对学生进行辩证唯物主义教育.
教学重点难点
重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.
教与学互动设计
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.
说明:我们把所有的这些数统称为有理数.
七年级数学教案5
一、教学目标
1、知识目标:掌握数轴三要素,会画数轴。
2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;
3、情感目标:向学生渗透数形结合的思想。
二、教学重难点
教学重点:数轴的三要素和用数轴上的点表示有理数。
教学难点:有理数与数轴上点的对应关系。
三、教法
主要采用启发式教学,引导学生自主探索去观察、比较、交流。
四、教学过程
(一)创设情境激活思维
1。学生观看钟祥二中相关背景视频
意图:吸引学生注意力,激发学生自豪感。
2。联系实际,提出问题。
问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
师生活动:学生思考解决问题的方法,学生代表画图演示。
学生画图后提问:
1。马路用什么几何图形代表?(直线)
2。文中相关地点用什么代表?(直线上的点)
3。学校大门起什么作用?(基准点、参照物)
4。你是如何确定问题中各地点的位置的?(方向和距离)
设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。
问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?
师生活动:
学生思考后回答解决方法,学生代表画图。
学生画图后提问:
1。0代表什么?
2。数的符号的实际意义是什么?
3。—75表示什么?100表示什么?
设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。
问题3:生活中常见的温度计,你能描述一下它的结构吗?
设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。
问题4:你能说说上述2个实例的共同点吗?
设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。
(二)自主学习探究新知
学生活动:带着以下问题自学课本第8页:
1。什么样的直线叫数轴?它具备什么条件。
2。如何画数轴?
3。根据上述实例的经验,“原点”起什么作用?
4。你是怎么理解“选取适当的长度为单位长度”的?
师生活动:
学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。
设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。
至此,学生已会画数轴,师生共同归纳总结(板书)
①数轴的定义。
②数轴三要素。
练习:(媒体展示)
1。判断下列图形是否是数轴。
2。口答:数轴上各点表示的数。
3。在数轴上描出下列各点:1。5,—2,—2。5,2,2。5,0,—1。5。
(三)小组合作交流展示
问题:观察数轴上的点,你有什么发现?
数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。
设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。
(四)归纳总结反思提高
师生共同回顾本节课所学主要内容,回答以下问题:
1。什么是数轴?
2。数轴的“三要素”各指什么?
3。数轴的画法。
设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。
(五)目标检测设计
1。下列命题正确的是()
A。数轴上的点都表示整数。
B。数轴上表示4与—4的点分别在原点的'两侧,并且到原点的距离都等于4个单位长度。
C。数轴包括原点与正方向两个要素。
D。数轴上的点只能表示正数和零。
2。画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的距离小于3的所有整数。
3。画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。
五、板书
1。数轴的定义。
2。数轴的三要素(图)。
3。数轴的画法。
4。性质。
六、课后反思
附:活动单
活动一:画一画
钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?
活动二:读一读
带着以下问题阅读教科书P8页:
1。什么样的直线叫数轴?
定义:规定了_________、________、_________的直线叫数轴。
数轴的三要素:_________、_________、__________。
2。画数轴的步骤是什么?
3。“原点”起什么作用?__________
4。你是怎么理解“选取适当的长度为单位长度”的?
练习:
1。画一条数轴
2。在你画好的数轴上表示下列有理数:1。5,—2,—2。5,2,2。5,0,—1。5
活动三:议一议
小组讨论:观察你所画的数轴上的点,你有什么发现?
归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。
练习:
1。数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。
2。距离原点距离为5个单位的点表示的数是________。
3。在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。
附:目标检测
1。下列命题正确的是()
A。数轴上的点都表示整数。
B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C。数轴包括原点与正方向两个要素。
D。数轴上的点只能表示正数和零。
2。画数轴,在数轴上标出—5和+5之间的所有整数。列举到原点的距离小于3的所有整数。
3。画数轴,观察数轴,在原点左边的点有_______个。
4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。
七年级数学教案6
学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:
如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)
1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)
课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体
1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的'顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。
六、小结,布置课后作业:
1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?
2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
七年级数学教案7
教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
非常高兴,能有机会和同学们共同学习
昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)
我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。
同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。
希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!
我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)
以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。
刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)
对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。
前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的.两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)
同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。
(1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?
(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)
(3) 一个数同0相加,其和有什么规律呢?(易得出结论)
同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。
同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)
(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)
同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)
看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。
通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!
同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。
七年级数学教案8
学习目标
1. 理解有序数对的应用意义,了解平面上确定点的常用方法
2. 培养用数学的意识,激发学习兴趣.
学习重点: 理解有序数对的意义和作用
学习难点: 用有序数对表示点的位置
学习过程
一.问题导入
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置
2.教材40页练习
三.方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,A点为原点(0,0),则B点记为(3,1)
2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]
1. 如图是某城市市区的一部分示意图,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的`位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
结合实际问题归纳方法
学生尝试描述位置
2. 如图,马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
[小结]
1. 为什么要用有序数对表示点的位置,没有顺序可以吗?
2. 几种常用的表示点位置的方法.
[作业]
必做题:教科书44页:1题
七年级数学教案9
教学目标
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力.
教学重点和难点
重点:列代数式.
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1?用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;( -7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
二、讲授新课
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2 用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3 用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n; (2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的'5倍与7的和的一半;(4)这个数的平方与这个数的 的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个?
三、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?
五、作业
1?用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2?已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
七年级数学教案10
【教学目标】
知识与技能:了解并掌握数据收集的基本方法。
过程与方法:在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】
讲授新课
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的'调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
七年级数学教案11
教学目标
1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点
深化对正负数概念的理解
知识重点
正确理解和表示向指定方向变化的量
教学过程(师生活动)
设计理念
知识回顾与深化
回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.
问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的'应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题
3,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指
定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
七年级数学教案12
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
给定的数字将被填入它所属的集合中
教学方法:
问题导向法
学习方法:
自主探究法
教学过程:
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的'学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
七年级数学教案13
一、素质教育目标
(一)知识教学点
能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算.
(二)能力训练点
培养学生的观察能力和运算能力.
(三)德育渗透点
培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯.
(四)美育渗透点
通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美.
二、学法引导
1.教学方法:尝试指导法,以学生为主体,以训练为主线.
2.学生学法:
三、重点、难点、疑点及解决办法
重点和难点是如何按有理数的运算顺序,正确而合理地进行有理数混合计算.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师用投影出示练习题,学生用多种形式完成.
七、教学步骤
(一)复习提问
(出示投影1)
1.有理数的运算顺序是什么?
2.计算:(口答)
① , ② , ③ , ④ ,
⑤ , ⑥ .
【教法说明】2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的..
(二)讲授新课
1.例2 计算
师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号.
思考:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.带分数进行乘除运算时,必须化成假分数.
动笔:按思考的步骤进行计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确.
一个学生板演,其他学生做在练习本上,教师巡回指导,然后师生共同订正.
【教法说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循“观察—思考—动笔—检查”的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯.
2.尝试反馈,巩固练习(出示投影2)
计算:
① ;
② .
【教法说明】让学生仿照例题的形式,自己动脑进行分析,然后做在练习本上,两个学生板演.由于此两题涉及负数较多,应提醒学生注意符号问题.教师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进行变式训练.
3.例3 计算: .
教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算.
思考:容易看到 , 是彼此独立的,可以首先分别计算,然后再进行加减运算.
动笔:按思考的步骤进行计算,在计算时强调不要“跳步”太多.
检查计算结果是否正确.
一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性.
4.尝试反馈,巩固练习(出示投影3)
计算:① ;
② ;
③ ;
④ .
首先要求学生观察思考上述题目考查的知识点有哪些?然后再动笔完成解题过程.四个学生板演,其他同学做在练习本上.
说明:1小题主要考查乘方、除法、减法运算法则及运算顺序等知识,学生容易出现 的错误.通过此题让学生注意运算顺序.3题主要考查:相反数、负数的奇次幂、偶次幂运算法则及运算顺序等知识点.让学生搞清 与 的区别; , .计算此题要特别注意符号问题;4题主要考查相反数运算法则及运算顺序等知识.本题要特别注意运算顺序.
【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律.注重培养学生的观察分析能力和运算能力.通过变式训练,也培养学生的思维能力.学生做练习时,教师巡回指导,及时获得反馈信息,对学生出现错误较多的问题,教师要进行回授讲解,然后再出一些变式训练进行巩固.
(三)归纳小结
师:今天我们学习了,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.
【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,提高运算的准确率.
(四)反馈检测(出示投影4)
(1)计算① ; ②
③ ; ④ ;
⑤ .
(2)已知 , 时,求下列列代数式的值
① ; ② .
以小组为单位计分,积分最高的组为优胜组.
七年级数学教案14
教学目标
1.知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”二元一次方程组和“形”函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一.故事引入
迪卡儿的故事蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二.尝试探疑
1 、 Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程xy=1?
以方程xy=1的解为坐标的点在不在函数y=x+1的图象上?方程xy=1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程xy=1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程xy=1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程xy=1。
然后学生会用同样的方法得出另一个结论:以方程xy=1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程xy=1到底有何关系呢?通过交流自动得出结论:以方程xy=1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3.在同一坐标系下,化出y=x+1与y=4x2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x2的交点坐标就是由两个函数表达式组成的方程组
y=x+1的解。
Y=4x2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三.方程与函数关系的应用
解方程组x2y=2
2xy=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的.交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1.把两个方程都化成函数表达式的形式。
2.画出两个函数的图象。
3.画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是x=2有的同学的解是x=2.1 y=2.1
y=1.9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四.引申
方程组x+y=2
x+y=5解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五.课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”二元一次方程与“形”函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六.作业
1.用作图象法解方程组2x+y=4
2x3y=12
2.如图,直线L、L相交于点A,试求出A点坐标
教学反思
这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。
七年级数学教案15
教学目标:
1、在解决问题的过程中,探索分数除以整数的计算方法,并能正确的进行计算。
2、在探索分数除以整数计算方法的过程中,体验算法的多样性,养成独立思考的习惯,促进个性化学习。
3、在解决现实问题的过程中,感受数学与生活的密切联系,体验学数学,用数学的乐趣。
教学过程:
一、创设情境,提出问题。
师:同学们,我们学校设立了许多课外兴趣小组,同学们在课余时间可以根据自己的兴趣爱好参加小组的活动。今天我们一起走进布艺兴趣小组,看看那里的同学给我们提出了哪些数学问题。
师:看大屏幕,从情境图中你找到了哪些数学信息?
生:布艺兴趣小组的同学要用9/10米的布给小猴做衣服。如果做背心,可以做3件;如果做裤子,可以做2条。
师:根据这些信息,你能提出什么数学问题?
生1:做一件背心需要花布多少米?
生2:做一条裤子需要花布多少米?
(教师根据学生的提问,有选择的进行板书)
二、自主探索,获取新知
1、独立思考、自主探究。
师:我们先看第一个问题 “做一件背心需要花布多少米?”怎样列算式?
生1:9/10÷3=
师:为什么用除法?
生1:把9/10平均分成3份,求1份是多少,所以用除法。
师:谁还能再说一遍?
生重复。
师:9/10÷3结果是多少呢?请在自己的练习本写一写、画一画,算一算。
生自主操作,师适时巡视指导,找出两位同学上台板演。
2、合作交流,解决问题。
师:将你的想法和同桌交流一下。
生交流。
师:我们来看几位同学的方法。
(投影展示,画线段图的方法)
师:我们先看第一位同学的方法,这是哪位同学的,你能来介绍一下吗?
生:(画线段图的方法)把9/10米平均分成3份,每份是3/10米。
师:我们再来看一位同学的,他用的是长方形布条,这是哪位同学的,介绍一下?
生:把9/10米平均分成3份,每份是3/10米。
师:不管是画线段图还是用长方形来表示,我们都可以得到每份是3/10米。
板书方法:画线段图。
师:我们再来看黑板上这两位同学的`(学生板演),请这位同学来介绍一下你的做法。
生:9/10÷3=9÷3/10=3/10(米)
把9/10米平均分成3段,就是把9个1/10米平均分成3份,每份是(9÷3)个1/10米,即3/10米
师:谁能再重复一遍?生重复。
师:我们可以用平均分的思想直接进行计算。(板书:平均分的方法)
师:看这种方法9/10÷3=9/10×1/3=3/10(米),(学生板演内容)谁来介绍一下?
生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。
生似懂非懂。
师:你们能明白吗?我们结合这条形图来看一下,(出示课件)。
师:把条形图平均分成3份,一份占多少?
生:1/3。
师:也就是求什么/
生:也就是求9/10米的1/3。
师:我们可以怎样计算?
生:9/10×1/3
师:看一下算式?有什么变化?
生1:前面是除法,后面是乘法。
生2:3和1/3互为倒数
师:也就是除法转化成了乘法。(板书:转化)
师:谁能再说一说这种方法?
师:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。
师:这就是第三种方法,利用乘法的意义进行计算。(板书:乘法的意义)
师:除了这几种方法,你还有哪些办法?
生:转化成小数来计算。
师:说一下
生:9/10米化成小数0.9米,平均分成3份,每份就是0.9÷3=0.3(米)。
师板书:9/10÷3=0.9÷3=0.3(米)
师:同学们想出了这么多方法解决问题,它们的结果相同,说明大家的思路是正确的,哪种方法更好一些呢?
生1:我认为第三种方法比较好,因为算起来比较简便。
生2:我认为第三种方法比较好,因为第二种方法只适用于能出开的情况。
师:说得非常好,到底他说的对不对,等会我们来验证一下。
3、选择算法,解决问题。
师:同学们,看来大家都已经有自己喜欢的方法了,我们来看第二个问题“做一条裤子需要花布多少米?”用你喜欢的方法独立完成。
(让学生独立列式,教师巡回指导,了解学生情况,找一位同学进行板演)
9/10÷2=9/10×1/2=9/20(米)
师:我们来看这位同学的,你们都和这位同学一样吗?谁来说说这种方法?
生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法来计算。
师:谁能再说一遍
生重复。
师:看算式,我们把除法转化成了乘法来计算。看来大家都觉得这种方法比较简单。
4、归纳概括,推广应用。
(1)师:仔细观察、分析刚才所解决的两个问题,想一想:我们怎样计算分数除以整数?看这两个算式,前面是除法,后面是?
生:乘法
师:看圈起来的两个数字,有什么关系?
生1:倒数
生2:互为倒数
师:一定要说完整。现在谁能用一句话来总结一下怎样计算分数除以整数的计算方法?
生:分数除以整数等于分数乘这个整数的倒数。(师板书)
师:谁能再说一遍?
生重复,全班同学一块交流。
三、巩固练习,加深理解
1、自主练习1
先让学生独立填写,然后组织交流。
交流时让学生说说自己的算法,体会到此题分数的分子都能被除数整除,所以采用分子除以除数的方法相对简捷。
2、自主练习2
让学生运用分数除以整数的计算方法连一连。独立完成,组织交流。
首先让学生观察第一行算式与第二行算式的特点以及之间的关系,从而悟出此题的意图,学生就可以顺利地利用分数除以整数的计算方法得出应该连的相应算式。
3、自主练习5
独立完成,投影展示交流。(两种方法,直接去除或者转化成乘法计算)
此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。
4、自主练习4
独立完成,板演交流
此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。
四、课堂小结
师:这节课我们主要学习了什么知识?
生:分数除以整数(板书)
师:通过这节课的学习,你有什么收获?
生汇报。
【七年级数学教案】相关文章:
七年级数学教案11-03
七年级上数学教案02-07
七年级初中数学教案03-01
七年级上册数学教案07-20
七年级下册数学教案12-13
初中七年级数学教案11-28
七年级数学教案精选15篇02-20
七年级数学教案(15篇)02-13
七年级上册数学教案15篇10-15