《比例的意义》教案15篇
作为一名辛苦耕耘的教育工作者,通常会被要求编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写呢?以下是小编为大家整理的《比例的意义》教案,仅供参考,大家一起来看看吧。
《比例的意义》教案1
教学目标:
1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:CAI课件
教学过程:
一、复习、导入
1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、 课件显示:算出下面每组中两个比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、 指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的'意义,学比例有什么用?比例有什么特点……)
5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
前项 后项
(2) 课件出示:3 : 5 = 18 : 30
内项
外项
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、 综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ② 20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
1.5:3=( ):4
=
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、全课总结(略)
《比例的意义》教案2
教学内容:
教材第30~31页比例的意义和基本性质,练习六第1~5题。
教学要求:
使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。
教学重点:
理解比例的意义和基本性质。
教学难点:
用比例的意义或性质判断两个比成不成比例。
教学理念:
以学生为主体,把较多的时间和空间留给学生探索、交流、概括。
教具、学具准备:
小黑板,教学课件
教学步骤
一、复习铺垫
l.什么叫做两个数的比?请你说出两个比。(教师板书)
2.什么是比的比值?上面两个比的比值是多少?
3.引入新课。
我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)
二、导入新课
1.教学比例的意义。
让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)
(1)3:5 24:40(2):7.5:3
追问:比值相等,说明每组里两个比怎样?
指出:表示两个比相等的式子叫做比例。
说一说,上面两个等式表示的是怎样的式子?
2.下面两个比之间的哪些○里能填“=”,为什么?
1:2○3:6 0.5:0.2○5:2
1.5:3○15:3:2○:1
提问:填了等号后的式子是什么?1.5:3和15:3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。
3.教学例1。
出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。
让学生根据比例的意义,在()里填上适当的数。
3:6=5:()0.8:()=1:
4.教学比例的基本性质。
向学生说明比例各部分的名称。
让学生看开始组成的'两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。
5.判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6:1.8和0.5:0.25能组成比例吗?
强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?
让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?
三、巩固练习
1.提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?
2.完成“练一练”。
指名4人板演.集体订正.说说是怎样判断的?
3.做练习六第1题。
让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。
4.做练习六第2题。
让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)
5.完成练习六第3题。
学生先观察、计算,然后口答,说明理由。
四、全课小结
这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?
五、布置作业
练习六第4、5题。
《比例的意义》教案3
1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。
2.学会判断成正比例关系的量。
3.进一步培养学生观察、分析、概括的能力。
教学重点和难点
理解正比例的意义,掌握正比例变化的规律。
教学过程设计
(一)复习准备
请同学口述三量关系:
(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。
(学生口述关系式、老师板书。)
(二)学习新课
今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。
幻灯出示:
一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?
生:60千米、120干米、180千米……
师:根据刚才口答的问题,整理一个表格。
出示例1。(小黑板)
例1 一列火车行驶的时间和所行的路程如下表。
师:(看着表格)回答下面的问题。表中有几种量?是什么?
生:表中有两种量,时间和路程。
师:路程是怎样随着时间变化的?
生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……
师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。
(板书:两种相关联的量)
师:表中谁和谁是两种相关联的量?
生:时间和路程是两种相关联的量。
师:我们看一看他们之间是怎样变化的?
生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。
师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?
生:路程由480千米变为420千米、360千米……
师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)
生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。
师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?
(分组讨论)
师:请同学发表意见。
生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。
师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?
师:根据时间和路程可以求出什么?
生:可以求出速度。
师:这个速度是谁与谁的比?它们的结果又叫什么?
生:这个速度是路程和时间的比,它们的结果是比值。
师:这个60实际是什么?变化了吗?
生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。
驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。
师:谁是定量时,两种相关联的量同扩同缩?
生:速度一定时,时间和路程同扩同缩。
师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。
(学生口算验证。)
生:都是60千米,速度不变,符合变化的规律,同扩同缩。
师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。
师:谁能像老师这样叙述一遍?
(看黑板引导学生口述。)
师:我们再看一题,研究一下它的变化规律。
出示例2。(小黑板)
例2 某种花布的米数和总价如下表:
(板书)
按题目要求回答下列问题。(幻灯)
(1)表中有哪两种量?
(2)谁和谁是相关联的量?关系式是什么?
(3)总价是怎样随着米数变化的?
(4)相对应的总价和米数的比各是多少?
(5)谁是定量?
(6)它们的变化规律是什么?
生:(答略)
师:比较一下两个例题,它们有什么共同点?
生:都有两种相关联的量,一种量变化,另一种量也随着变化。
师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的.意义)
师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?
生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。
师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)
师:很好。请打开书,看书上是怎样总结的?
(生看书,并画出重点,读一遍意义。)
师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?
师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?
生:(答略)
师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。
(三)巩固反馈
1.课本上的“做一做”。
2.幻灯出示题,并说明理由。
(1)苹果的单价一定,买苹果的数量和总价( )。
(2)每小时织布米数一定,织布总米数和时间( )。
(3)小明的年龄和体重( )。
(四)课堂总结
师:今天主要讲的是什么内容?你是如何理解的?
(生自己总结,举手发言。)
师:打开书,并说出正比例的意义。有什么不明白的地方提出来。
(五)布置作业
(略)
课堂教学设计说明
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。
板书设计
《比例的意义》教案4
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例1。
出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨) 10 20 30 40 50
所需的天数 30 15 10 7.5
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答 讨论结果得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例2
出示例2
请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的'面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3) 判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。
《比例的意义》教案5
素质教育目标
(一)知识教学点
1.使学生理解正比例的意义。
2.能根据正比例的意义判断两种量是不是成正比例。
(二)能力训练点
1.培养学生用发展变化的观点来分析问题的能力。
2.培养学生抽象概括能力和分析判断能力。
(三)德育渗透点
1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。
2.进一步渗透函数思想。
教学重点:使学生理解正比例的意义。
教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。
教具学具准备:投影仪、投影片、小黑板。
教学步骤
一、铺垫孕伏
用投影逐一出示下列题目,请同学回答:
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、探究新知
1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。
2.教学例1
(1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米……
(2)出示下表,并根据上述内容填表。
一列火车行驶的时间和所行的路程如下表
(3)边填表边思考:在填表过程中,你发现了什么?
学生交流时,使之明确。
①表中有时间和路程两种量。
②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米……时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
教师点拨:
像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:两种相关联的量)
③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。
教师问:根据计算,你发现了什么?
引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。
教师指出:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)
④比值60,实际就是火车的速度。用式子表示它们的关系就是:
(4)教师小结:
刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的'比的比值总是一定的。
3.教学例2
(1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
(2)观察上表,引导学生明确:
①表中有数量(米数)和总价这两种量,它们是两种相关联的量。
②总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小。
③相对应的总价和米数的比的比值是一定的。
④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:
(3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)
4.抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论,这两个例子有什么共同点?
(2)学生初步交流时引导学生明确:
①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;
②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。
教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)
③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。
(学生答不出来时,教师引导、点拨,并补充板书:两种量中)
(3)引导学生抽象概括出两例的共同点:
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。
(4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
(补充板书:如果这成正比例的量正比例关系)
这就是我们这节课学习的“正比例的意义”(板书课题)
(5)看书19、20页的内容,进一步理解正比例的意义。
(6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。
(7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
(9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
5.教学例3
(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
(2)根据正比例的意义,由学生讨论解答。
(3)汇报判断结果,并说明判断的根据。
教师板书:
面粉的总重量和袋数是两种相关联的量。
所以面粉的总重量和袋数成正比例。
6.反馈练习
让学生试做第21页的做一做,并订正。
三、巩固发展
1.完成练习三第1题。
先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?
2.完成练习三第2题的(1)-(9)
先让学生自己判断,再订正。
四、全课小结(师生共同进行)
通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?
《比例的意义》教案6
教学内容
教科书第48~50页例1、例2,课堂活动及练习十一1,2题。
教学目标
1.理解比例的意义,认识比例各部分的名称。
2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。
3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
教学重点
理解比例的意义和基本性质。
教学难点
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学准备
课件,扑克牌10张(2~10以及A),圆规一个。
教学过程
一、复习准备
(1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
12∶16 34∶18 4.5∶2.7 10∶6
教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
二、探究新知
1.提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质
2.探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长26
影子长39
教师:观察上表,你能写出多少个有意义的`比?并求出比值。把这些比都写出来。
学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的意义)
教师:2∶9和3∶6能组成比例吗?你是怎么知道的?
指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
3.认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4.教学比例的基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5.运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?
学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。
(2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。
《比例的意义》教案7
教学内容:教科书第19—21页正比例的意义,练习六的1—3题。
教学目的:
1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。
2.初步培养学生用事物相互联系和发展变化的观点来分析问题。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程():
一、复习
用,投影片逐一出示下面的题目,让学生回答。
1.已知路程和时间,怎样求速度?板书: =速度
2.已知总价和数量,怎样求单价?板书: =单价
3.己知工作总量和工作时间,怎样求工作效率?板书:
=工作效率
4,已知总产量和公顷数,怎样求公顷产量?板书: =公顷产量
二、导人新课
教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)
三、新课
1.教学例1。
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:
提问:
“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)
“表中有哪几种量?”
“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”
“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”
教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的.路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60, =60…… 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。
然后教师指着 =60, =60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)
教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)
2.教学例2。
出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
让学生观察上表,并回答下面的问题:
(1)表中有哪两种量?
(2)米数扩大,总价怎样?米数缩小,总价怎样?
(3)相对应的总价和米数的比各是多少?比值是多少?
当学生回答完第二个问题后,教师板书: =3.1, =3.1, =3.1……
然后进一步问:
“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。
3.抽象概括正比例的意义。
教师:请同学们比较一下刚才这两个例题,回答下面的问题;
(1)都有几种量?
(2)这两种量有没有关系?
(3)这两种量的比值都是怎样的?
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)
接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?
最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?
学生回答后,教师板书: =K(一定)
4,教学例3。
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
教师引导:
“面粉的总重量和袋数是不是相关联的量?”·
“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书: =每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”
5.巩固练习。
让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。
四、课堂练习
完成练习六的第1—3题。
第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)
第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。
《比例的意义》教案8
教学目标:
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:
成正比例的量的特征及其判断方法。
教学难点:
理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
教 法:
启发引导法
学 法:
自主探究法
教 具:
课件
教学过程:
一、定向导学(5分)
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
4、导入课题
今天我们来学习成正比例的量。
5、出示学习目标
1、理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)
自学内容:书上45页例1
自学时间:8分钟
自学方法:读书法、自学法
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
(1)两种相关联的.量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
(2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定
(3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
y/x=k(一定)
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升
引导学生小结成正比例的量的意义和关系式。
三、合作交流(5分)
第46页正比例图像
1、正比例图像是什么样子的?
2、完成46页做一做
3、各组的b1同学上台讲解
四、质疑探究(5分)
1、第49页第1题
2、第49页第2题
3、你还有什么问题?
五、小结检测(8分)
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测
1、49页第3题。
六、堂清作业(9分)
练习九页第4、5题。
板书设计:
成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
关系式:
y/x=k
(一定)
《比例的意义》教案9
学情分析
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点和难点
教学重点:认识反比例关系的意义。
教学难点 :掌握成反比例量的变化规律及其特征。
教学过程一、复习导入
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、教学新课
1.教学例4。
出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?
点名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的'天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例5。
出示例5。
按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?
(板书:每袋重量和袋数的积一定)
乘积8000是什么数量,这种数量关系用式子怎样表示?
[板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)
3.概括。
(1)综合例4、例5的共同点。
提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例4、例5里两种相关联的量,它们是什么关系的量呢?
像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。
问:两种相关联的量成不成反比例的关键是什么?
(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。
4.具体认识。
(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例5里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)做练习八第4题。
让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]
(4)判断。
现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
三、巩固练习
1. 做“练一练”第l,2,3,4,5题。
指名口答,说说理由。思考时可以引导看数量关系式,说明理由。
2.拓展应用。
3.综合练习
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
《比例的意义》教案10
教学目标
知识目标:理解比例的意义。
技能目标:能正确判断两个比是否能组成比例,培养学生抽象概括能力。
情感目标:使学生初步感知事物间是相互联系、变化发展的。
教学重难点
重点:理解比例的意义。
难点:判断两个比能否组成比例。
教学工具
多媒体课件
教学过程
一、新课导入
请同学们回忆一下比的知识,比的前项、后项和比值。
二、教学过程
1.比例的`意义
(1)出示P40例1
操场上和教室里两面国旗的长和宽的比值有什么关系?
2.4∶1.6=3∶2
60∶40=3∶2
2.4∶1.6=60∶40
象这样表示两个比相等的式子叫做比例。
比例也可以写成:=
做一做
1、下面那组中的两个比可以组成比例?把组成的比例写出来。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) ∶和6∶4 (4)0.6∶0.2和∶
答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2
(4)0.6∶0.2=3∶2 ∶ =3∶1
所以,只有第一组可以组成比例为6∶10=9∶15
2、用图中4个数据可以组成多少比例?
答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5
全课小结
通过这节课,我们学到了什么知识?什么是比例?
拓展延伸
用8、12四个数分别作为比例的项,你能组成几个比例?
课后小结
通过这节课,我们学到了什么知识?什么是比例?
课后习题
一、填空
1、( )叫做比例。
2、两个比的( )相等,这两个比就相等。
3、把6×8=24×2改写成四个比例。
4、把7m=8n改写成四个比例。
5、根据8×9=3×24,写出比例( )
6、如果7a=6b,那么a:b=( ):( )。
7、如果9a=5b,那么b:a=( ):( )。
二、选择
1、下面的比中能与3∶8组成比例的是( )。
A.3.5∶6 B.1.5∶4 C.6∶1.5
2、甲数除乙数的商是1.8,那么甲数与乙数的比是( )。
A.9:5 B.5:9 C.1:8
3、下面的数中,能与6、9、10组成比例的是( )。
A.7 B.5.4 C.1.5
板书
表示两个比相等的式子叫做比例。
《比例的意义》教案11
教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。
教学目的:使学生理解比例的意义和基本性质。
教学过程():
一、教学比例的意义
1.复习。
(1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。
(2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?
教师板书出下面几组比,让学生求出它们的比值。
12:16 :1 4·5:2.7 10:6
学生求出各比的比值后,再提
“请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?
这就是这节课我们要学习的内容。(板书课题:比例的意义)
2.教学比例的意义。
(1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。
板书:第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:5=40。让学生观察这两个比的比值。再提问:
“你们发现了什么?”(这两个比的比值都是40。)
“所以这两个比怎么样?”(这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5或 = )像这样(指着这个式子和复习题的式子4. 5:2.7=10:6)表示两个比相等的式子叫做比例。
指着比例式80:2=200:5,提问:
“谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。
“从比例的意义我们可以知道.比例是由几个比组成的?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断10;12和35:1:这两个比能不能组成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上举例边说边板书。)
(2)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(3)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的食指交叉表示。)
6:3和12:6 35:7和45:9
20:5和.16:8 0.8:0.4和 : :
学生判断后,指名说出判断的根据。
②做第10页的“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的.,让他们说说是怎样做的,看看自己做得对不对。
③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。
④做练习四的第3题。
对于能组成比例的四个数,把能组成的比例写出来:组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。
二、教学比例的基本性质
1.教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5)
指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下:
80 :2=:200 :5
内项
外项
2.教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。
“通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。
最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200
3.巩固练习。
教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以
3:4和6:8可以组成比例。(边说边板书:3:4=6:8)
(2)做第11页“做一做”的第1题。
三、小结
教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
四、作业
练习四的第2题。
《比例的意义》教案12
教学内容:
《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
c、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:1020=6002030=6003020=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?
生:……
师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。
六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
[案例分析]:
通过联系生活实际,学习成反比例的.量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
《比例的意义》教案13
教学目标:
1、 使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。
2、 培养学生的观察能力、判断能力。
教学重点:
比例的意义和基本性质
学法:
自主、合作、探究
教学准备:
课件
教学过程:
一:创设情境,导入新课
1、 谈话,播放课件,引出主题图
师:这节课我们上一节数学课,这节数学课有很多有趣的知识等待着同学们去探索和发现呢!同学们你们有信心接受挑战吗?
(播放视频,生观察,并说看到的内容)
师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)
师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。
问:画面上这几面国旗有什么不同?(大小不一样)
师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)
(课件出示主题图,让学生说出长和宽各是多少)
问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)
二、引导探究,学习新知
1、比例的意义
(生汇报求比值的过程)
师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的比值相等)
师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)
师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)
师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的.意义?(板书课题,生汇报,是板书意义)
问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)
(小练习,课件出示)
2探究比例的基本性质
(1)自学比例的名称
师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)
(2)合作探究比例的基本性质
师:同学们,你们知道吗?在比例的内项和外项之间还存在着一个有趣的特性呢!你们想去发现这个特性吗?接下来就请同学们以小组为单位合作探究比例的基本性质。(板书:比例的基本性质) 课件出示小组合作学习提示,指名读
各小组派一名代表汇报合作学习发现的规律。
师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。
师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)
师:如果把比例改写成分数形式是什么样的?生回答。根据比例的基本性质,等号两边的分子和分母之间又有什么关系呢?生回答,师板书
三、巩固练习(见课件)
四、汇报学习收获
《比例的意义》教案14
教学要求:
1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学重点:
认识正比例关系的意义。
教学难点:
掌握成正比例量的变化规律及其特征。
教学过程:
一、复习铺垫
1.说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2.引入新课。
上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)
二、自主探究:
1.教学例1。
出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:
(1)表里有哪两种数量,这两种数量是怎样变化?
(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?
(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?
引导学生进行讨论,得出:
(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。
(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。
(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)
2.教学例2。
出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)
3.概括正比例的意义。
(1)综合例1、例2的共同点。
提问:请大家比较例l和例2,你发现这两个例题有什么共同的`地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)
(2)概括正比例关系的意义。
像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。
4.教学例3学生看书自学,小组讨论,集体交流。
(1)数量与时间是不是两种相关联的量?
(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?
(3)判断数量与时间是不是成正比例?
5.完成97页练一练。
三、巩固练习
1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?
2.做练习十一第1题。
让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。
3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?
一种苹果,买5千克要10元。照这样计算,买15千克要30元。
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。
五、家庭作业
练习十一第2~6题。
《比例的意义》教案15
【学习目标】
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。
【学习重点】
理解反比例函数的意义,确定反比例函数的解析式。
【学习难点】
反比例函数的解析式的确定。
【学法指导】
自主、合作、探究
教学互动设计
【自主学习,基础过关】
一、自主学习:
(一)复习巩固
1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.
2.一次函数的解析式是:;当时,称为正比例函数.
3.一条直线经过点(2,3)、(4,7),求该直线的解析式.
以上这种求函数解析式的方法叫:
(二)自主探究
提出问题:下列问题中,变量间的`对应关?可用怎样的函数关系式表示?
1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.
(1)当y1-y2=4时,求m的值;
(2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程).
26.1.2反比例函数的图象和性质:课文练习
1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的是( )
A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[
B.它们的图象都是轴对称图形
C.它们的图象都是中心对称图形
D.当x>0时,两个函数的函数值都随自变量的增大而增大
【《比例的意义》教案】相关文章:
《比例的意义》教案12-02
《比例的意义》教学教案02-25
《比例的意义》教案(15篇)12-04
《比例的意义》教案14篇01-05
《比例的意义》教案(精选15篇)01-04
《正比例的意义》教案02-17
反比例的意义教案04-01
《比例的意义》教案精选15篇03-02
《比例的意义》教案合集15篇03-04