- 相关推荐
乘法的教案
作为一名教师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写才好呢?下面是小编整理的乘法的教案,欢迎阅读,希望大家能够喜欢。
乘法的教案1
一、教学目标
(一)知识与技能
让学生运用类推的方法学会因数中间和末尾有0的乘法计算。
(二)过程与方法
继续培养学生在精确计算之前用口算估出积的范围的习惯,为粗略的判断精确结果是否正确提供方法。
(三)情感态度和价值观
运用所学的知识解决日常生活中的简单问题,渗透单价、数量和总价的数量关系。
二、目标解析
因数中间有0的乘法计算方法和前面学习过的相同:第一个因数的每一位都要与第二个因数相乘。这里需要注意的是:即使十位上是0也要相乘;个位不满十时,十位上要用0占位。因数末尾有0的乘法,提供了两种写法,竖式写法不同,但结果相同,第二种更简便,可以引导学生说说这种算法的算理。因为算理相同,可以让学生自主探究。
三、教学重难点
教学重点:学会因数中间和末尾有0的乘法计算。
教学难点:自主探究末尾有0的.乘法计算。
四、教学准备
课件。
五、教学过程
(一)复习导入
1.出示下列各题(列竖式计算)。
123×3= 368×3=
2.指名两名同学板演,其他同学在草稿上计算。
3.汇报,说说两道题的不同,需要注意什么?
第1小题不进位,第2小题需要连续进位。计算时要注意:哪位满几十就要向前一位进几。
【设计意图】因数中间有0与末尾有0的乘法与一般乘法的算法是一样的,通过复习旧知,为学习新知打好基础,更顺利地借助旧知进行有效迁移。
(二)探究新知。
1.学习因数中间有0的乘法。
(1)课件出示问题:
(2)列式:604×8
(3)估一估,大约有多少个座位?
604接近600,600×8=4800,座位应该比4800个多一点。
(4)课件指名上黑板,其他同学在草稿纸上尝试解决。
<<<123>>>
①说说这个算式中的第一个因数与以前学习的有什么不同?(因数中间有0。)
②以前因数中间没有0,是怎么计算的?现在因数中间有0,要不要分别相乘呢?如果不乘,会出现什么情况?
③小结:
因数中间有0的乘法的计算方法和前面学习过的相同,即使十位上是0也要相乘;个位不满十时,十位上要用0占位。
(5)小练习:102×3(不进位) 109×3(一次进位) 409×3(两次进位)
【设计意图】算前估一估,既为粗略的判断精确算结果是否正确提供方法,同时体现了解决问题策略的多样性。因为因数中间有0的算法同前面学习过的算理相同,让学生进行自主探究,可以提高学生独立解决问题的能力及概括能力。最后的小练习提供了三种由易到难的计算,通过对比,进一步巩固了因数中间有0的乘法计算的方法。
2.学习因数末尾有0的乘法。
(1)出示问题:
(2)说说你知道了什么信息?求的是什么问题?(知道了单价和数量,求总价。)
(3)列式:280×3
(4)你能估一估吗?
280接近300,300×3=900,需要的钱数比900少一些。
(5)在草稿纸上列竖式计算。
(6)汇报。
(7)说说对方法二的理解。(借助整百数的口算方法理解简写的道理:28个十乘3等于84个十。)你更喜欢哪一种?
(8)说说因数末尾有0的乘法在简写时需要注意什么?(一是一位数书写的位置,这个一位数应该与多位数中0前面的那个数字对齐;二是积末尾0的个数,多位数末尾有几个0,就在积的末尾添上几个0。)
(9)小练习:做一做第2题。
【设计意图】估算是一种良好的计算习惯,应该在任何不能口算的计算前都要有所体现,以提高计算的正确率。继续让学生进行自主探究,探索因数末尾是0的乘法计算方法。两种计算方法,体现了算法的多样化,同时渗透优化思想,引导学生选择较方便的方法二。虽然教材中没有给出完整的计算法则的文本,但是要求学生在亲身体验和讨论交流的基础上,记录讨论的结果,突出计算的基本步骤和要点,引导学生在理解的基础上对计算法则进行归纳和总结。小练习起到了巩固知识的作用。
(三)练习提高
1.练习十四第1题。
(1)独立完成后汇报。
(2)再说一说因数中间有0的乘法是怎样计算的。
2.练习十四第6题。
(1)独立完成后汇报。
(2)再说一说因数末尾有0的乘法如何简便计算。
3.练习十四第5题。
不用计算,你能判断哪个算式的得数大?说说理由。
4.练习十四第3题。
(1)独立完成比较大小。
(2)说说你是怎么快速判断的。
【设计意图】第(一)题和第(二)题是分别有关因数中间有0和末尾有0的乘法计算,通过一定量的练习,继续巩固有关计算的法则。第(三)题通过有关0的乘法计算的规律快速进行得数大小的判断,使所学知识得到灵活运用。第(四)题综合运用有关0的四则运算,达到快速区分的目的。
(四)谈收获
说一说您今天学习到了哪些内容,你有什么体会?
乘法的教案2
教学目标:
1、结合解决实际问题,学习小数乘整数的计算方法,并能正确得进行计算。
2、经历小数乘整数算理的理解和计算方法的探索过程,体验算法的多样性,培养学生的发散思维。
3、在解决实际问题的过程中,感受社会主义建设的巨大成就,培养热爱家乡、热爱祖国的情感,激发学生学习数学的兴趣。
教学重点:
探索小数乘整数的计算方法;理解小数乘整数的算理。
教学难点:
确定积的小数位数。
教学方法:
提出问题自主探索利用知识的关联探究总结算法教具多媒体
教学过程:
一、创设情境,提出问题。
1、谈话:同学们去过三峡吗?在假期里,老师去三峡旅游了,见到了闻名世界的三峡大坝!还带回来一段录像呢!想不想看看?[放录像](出示信息窗1)
2、生认真观察情境图,读取信息,提出问题。
生1:6台发电机组每小时发电多少万千瓦时?
生2:10台发电机组又能发电多少万千瓦时?
(每台发电机组15小时发电多少万千瓦时?20xx年有多少台发电机组投入发电?26台发电机组可发电多少万千瓦时?)
3、教师根据学生提出的有用问题,粘贴在黑板上。
二、合作探究、理解算理。
解决问题一:6台发电机组每小时发电多少万千瓦时?
1、独立列式估算。
58.66=
交流:58.660,606=360。
2、竖式计算,小组讨论。
师:你们能不能准确算出正确的得数?
(学生先独立用竖式计算;然后小组交流计算方法。)
3、理解算理算法,总结概括。
(1)汇报展示,学生汇报的同时展示学生计算过程。
教师小结:刚才这两种不同的形式都用到了同一个方法,就是先将小数转化成整数来计算。
(2)多媒体演示转化过程,加深学生对算理的理解和掌握。
(3)直接用竖式计算的,你能看懂吗?说说是怎样算的。
交流方法,加深记忆:先将58.6扩大的原来的10倍变成586,5866=3516,再将3516缩小到原来的1/10,就是351.6。
教师小结:刚才,我们学习的.是小数部分是一位的小数乘法,如果小数部分是两位、三位的,你还会像同学那样用竖式计算吗?
(4)多媒体出示练习:2.475= 2.4532=
学生独立计算后,在实物投影仪上展示订正并说出计算思路。教师引导学生总结具体方法,多媒体出示。
三、巩固应用,完善算法。
1、独立解决其他问题,简单交流。
2、解决问题二:这个月我家用电45千瓦时,每千瓦时0.62元。应付电费多少元?
(1)独立计算交流方法。
(2)一生板演,共同探讨,教师有针对性地进行指导,注意引导学生算理的表述和结果的化简。
3、说一说怎样计算小数乘整数
[设计意图]通过几个问题的解决以及对小数乘整数算理及计算方法的总结,使学生进一步掌握并熟练小数乘整数的计算,为后续的小数乘小数做好准备。
四、运用知识,解决问题
1.多媒体出示火眼金睛辨对错。
2.多媒体出示我帮妈妈算一算。(课本4页第6题)
生独立计算,互相检查,看学生能够根据乘法意义正确列
五、回顾反思,总结全课
同学们,我们这节课一起研究了什么内容,你能说给大家听一听吗?
六、作业
调查了解电费的单价及各自家庭的用电数量,计算各自家庭的电费,并结合实际谈一谈怎样节约用电。
乘法的教案3
教学内容:
教科书第7—9页《分数乘法(三)》
教学目标:
1、结合具体情境,,探索并理解分数乘分数的意义;探索并掌握分数乘分数的计算方法,并能正确计算;
2、培养学生动手操作,观察发现的能力。
3、能解决简单的分数与分数相乘的实际问题,
4、体会数学与生活的密切联系,培养学生学习数学的兴趣。
教学重点
1、结合具体情境,,探索并理解分数乘分数的意义;
2、在操作活动中,借助图形语言,理解分数乘分数的意义
教学准备
1、每人准备一条约10厘米长的纸条;
2、每人准备5张长方形的纸。
教学过程
一、 复习
5×3/7 20×7/10 7/8×4 15×3/5
(1)你是怎么算的?
(2)表示什么?
这就是我们前几天研究的分数乘整数的意义和计算方法,今天我们继续来研究分数乘法(三)。
二、探究新知
(一)探究分数乘法的意义
1、《庄子天下》
我国文化源远流长,《庄子天下》中有这样一句话,找同学读一下我国古代著名哲学著作《庄子·天下》中有这样一段话:“一尺之捶,日取其半,万世不竭。”意思是说:“一尺长的木棍,每天截一半,永远也截不完。”
一尺之捶是指有限的长度,而万世不竭是指无限的时间。这是一个辩证
的思想。我们可以把他变成数学问题,来理解这个问题。
2、一张长方形纸条,第一次剪去它的 1/2 ,第二次剪去剩余部分的1/2 。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的'1/2 ,那么剩下的部分占这张纸条的几分之几?
(1)读题(你明白了吗?明白了)
(2)拿出准备好的纸条,按照要求,动手中折一折、涂一涂,看看“剩下的部分占这张纸条的几分之几?”
(3)小组交流
(4)全班汇报(学生边展示边汇报)
生:把这条纸平均分成两份,第一次剪去他的1/2还剩1/2,第二次剪去剩余部分的1/2,就是求1/2的1/2是多少,(1/4)。剪去剩余部分的1/2就是求剩余部分的1/2,就是1/4的1/2是多少。
生:我第一次剪把一张纸平均分成了2份,剪去他的1/2,还剩多少 ?(1/2)
第二次剪剩余部分的1/2,(剩余部分是多少呢?)1/2。是将1/2剪去他的1/2。(点:也就是在1/2的基础上剪了1/2)。是这么大。(点:①是多少呢?打开看看(1/4)。②是1/4,打开给大家看看)
第三次剪去剩余部分的1/2,(剩余部分是多少?1/4)在1/4的基础上剪了1/2,是多少呢?
你能把他刚才讲的过程再说一遍吗?
也就是说第二次剪了1/2的1/2,第三次剪了1/4的1/2
(5)第二次剪了1/2的1/2,你能列出算式吗?(1/2×1/2=1/4) 1/2×1/2表示什么?(1/2的1/2是多少)
第三次剪了1/4的1/2,你还能列出算式吗?(1/4×1/2=1/8) 1/4×1/2表示什么?(1/4的1/2是多少)
看来大家是明白了,
(求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课
学习的求一个数的几分之几的意义相同,所以用乘法计算。)
(二)探究分数乘法的计算方法
1、我们学过整数乘以分数的计算方法,看这个算式3/4×1/4-=表示什么呢?3/4×1/4到底是多少呢?我们可以利用手中的长方形纸折一折,涂一涂看看3/4×1/4等于多少
(1)学生折一折,涂一涂。
(2)同桌互说你是怎么想的。
(3)汇报
生:我把这张纸平均分成4份,取了其中的3份。我再给他这样平均分成4份,取了其中的1份。刚才我们是竖着平均分,现在我们是横着平均分。 (点:是谁的1/4?)
我先竖着分平均分成4份,取了其中的三份,我再横着分,把3/4平均分成4份,取其中的1份,就是3/16
你能把它刚才说的过程结合图形再说一遍吗?
还有的同学是这样做的,大家一起看一下,这样行不行?行,你看行吗?
第一次分的时候3/4能分出来。第二次分3/4的1/4怎么分?有麻烦。所以我们分的时候可以先竖着分,再横着分。或者先横着分再竖着分。
(4)请你说一说,红色部分占斜线部分的几分之几?红色部分占整
张纸的几分之几?
(5)你那么3/4×1/4=?
(6)通过折我们知道了3/4×1/4=3/16
(7)观察:结合图观察3/16的16表示什么?(表示分的份数)3表示什么?(3/4和1/4共同的部分)
2、做一做:按照上面的方法折一折,想一想,并算出结果。
3/8×1/22/3×1/3
师:请认真观察1/2×1/2=1/41/4×1/2=1/8 3/4×1/4=3/16 3/8×1/2=3/162/3×1/3=2/9算式
(1)观察思考:观察这几组式子你能发现什么?(手)举例子来说
(2)说一说:你能总结分数与分数相乘的计算方法吗?
(3)小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。这就是今天这节课所要学习的分数乘分数的计算方法。
3、试一试:
1/4×2/3 3/5×2/9 7/8×5/14
强调:能约分的要先约分。
(三)看书质疑
三、课堂练习
2、解决问题。
(1)教科书第8--9页“练一练”第2、3、4、6、题。
学生完成后,说说解题思路。
(2)书第9页数学故事“唐僧分西瓜”
四、全课总结
乘法的教案4
教学目标:
1、发现、理解和掌握乘法分配律;
2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;
3、培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。
教学重点:
乘法分配律的意义及其应用。
教学难点:
应用乘法分配律进行简便计算。
教学过程:
一、创设情境,激发兴趣:
(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?
生:(齐)高兴激动。
生1::打个招呼,宋老师好。
生2:宋老师好!
师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?
生:不是,是分别握手。
生:乘法分配律(小声地)
(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)
二、自主探索,合作交流
师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。
1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?
(1)阅读理解:让学生充分表达自己知道了什么。
生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。
生2:每个小组共有6人。
(2)分析解答:
学生汇报自己的解法,引导学生说明不同算法的理由。
板书:(4+2)×254×25+2×25
2、两个算式的结果怎样?用什么符号连接?生读等式
板书:(4+2)×25=4×25+2×25
生读算式(4+2)×25=4×25+2×25
3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?
口头列式,得出(58+42)×9=9×58+9×42(生读等式)
4、观察这两组算式,请你写出一些类似的式子。
每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)
投影展示
生1:(1+2)×3=1×3+2×3
(3+2)×4=4×3+2×4
(10+2)×5=10×5+2×5
(6+4)×5=6×5+4×5
生2:(4×2)×3=4×3+2×3
生3:他的算式是错的,括号里应该是两数之和。
生4:(+)×=×+×
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
师;尝试用文字总结发现的规律
生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。
等号两边的算式有什么相同和不同?
5、集体归纳。
抓住:两个数和、分别相乘
小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是(电脑出示下面的文字)
两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。
6、讨论记忆乘法分配律的方法。
师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。
生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。
生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。
学生的方法很多。
(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)
三、巩固新知,尝试练习
1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?
(12+200)×3=□×3+□×3
15×(40+2)=□×40+□×2
2、数学游戏:找朋友
(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)
(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)
提问:22×7+18和(22+18)×7是朋友吗?如果要让它们成为朋友,该怎么改?
(2)整理卡片,分成两组
甲组乙组
①100×31+2×31①(100+2)×31
②9×(37+63)②9×37+9×63
③(22+18)×7③22×7+18×7
分组计算比赛:女生计算甲组的`三道题,男生计算乙组的三道题。看谁算的快。
(设计意图:制造冲突,引出认知矛盾)
男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)
小结:能口算,并且能凑整十、整百数,算起来比较简便。
利用乘法分配律可以使一些计算简便。
(这一环节进行充分运用,渗透简便运算的意识)
四、运用规律,内化新知
(8+4)×25=34×72+34×28=
先观察,说一说算式特点,再尝试计算、指名板演、全班交流
(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)
五、课堂总结与评价:
用自己的话说一说什么是乘法分配律?
(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)
板书设计:
乘法分配律
(4+2)×25=4×25+2×25
(a+b)×c=a×c+b×c
甲组乙组
①100×31+2×31①(100+2)×31
②9×(37+63)②9×37+9×63
③(88+12)×7③88×7+12×7
乘法的教案5
【教学目标】
知识技能:初步学会用乘法口诀求商。
过程与方法:经历探索除法计算方法的过程,了解用乘法口诀想商的思路。
情感态度:培养学生的动手操作能力和初步的抽象能力,养成良好的学习习惯。
【教学重难点】
重点:掌握用2~6的乘法口诀求商的方法
难点:用乘法口诀想商的思路
【教学过程】
一、创设情境,引入新知
出示例1放大图,讲述猴妈妈给小猴分桃的故事。二、自主探索,学习新知
看图,思考问题:小猴摘了几个桃子?猴妈妈准备分给几只小猴?
引导:我们会用动手分一分的方法解决“可以分给几只小猴”的问题。如果不动手操作学具,怎样算出结果呢?
二、小组合作,探究方法。
(1)各小组动手分一分,并说说分的过程。
(2)小组合作,交流方法。
我们通过分一分知道了可以分给4只小猴。如果我们不动手分,那该怎样想呢?
学生交流想法。
揭示课题,板书课题:用2~6的乘法口诀求商。
12÷3的'商是几?你是怎样算的?
学生汇报并说明解题思路。
小结。
三、拓展应用,加深理解
引导学生完成第“做一做”。
(1)要求学生利用口诀独立解决,并想想这些题目有什么特点。教师巡视指导。
(2)交流汇报。
引导学生完成练习
学生认真观察图,说说图意。然后独立完成。
四、课堂总结。
今天的学习你有什么收获?
【课堂检测】
必做
1填一填
(1)10个苹果平均分给5个小朋友,每个小朋友分几个?
(2)12根小棒,每3根围一个三角形,能围几个三角形?
选做
2想一想,写2个除法算式
(1)三五十五
【教学反思】
乘法的教案6
教学内容:
教学目标:
1、结合“整理书”的问题情境,探索两位数乘两位数(不进位)的乘法,经历交流算法多样化的过程。
1、学会进行两位数乘两位数的乘法计算,并能解决一些简单的'实际问题。
教学重点:
探索并掌握两位数乘两位数(不进位)的乘法计算。
掌握两位数乘两位数(不进位)的乘法并能熟练计算。
教学过程:
一、 情景引入
看图编题:
今天,我们轮到笑笑整理图书了,这个书架有12层,每层能防14本书,这里有150本书,请问,这150本书能放得下吗?
二、展开
1、让同学们根据图中所提供的数学信息编一道数学应用题。
2、根据所编问题独立列式。(14×12=?)
3、研讨和交流如何解决问题。
⑴、尝试通过估算结果解决问题。
A、分组讨论不同过计算,有什么方法能找出这个计算结果的一个范围?
生1:把算式中的12看成10,14×10=140,所以结果应该大于140。
生2:再把算式中的14看成15,15×10=150,所以结果应该大约为150。
(引导同学关注估算过程和其特点,让同学质疑,发表意见)
B、师:根据以上估算的结果,能判断“这个书架能放下
150本书”吗?
(引导同学讨论,体会解决这个问题靠估算不行,须计算。)
⑵、①独立考虑14×12=?计算方法,小组交流算法。
②集体汇报。
③考虑三种算法之间的异同,引导选用最佳计算方法。
三、习题巩固
试一试:11×43 24×12 44×21
练一练:第1、2题,同学先独立完成,再集体交流。
在交流时试着让同学说出算理。
第3题,让同学独立考虑,理解题意,再进行计算。
四、综合应用
陈老师班上有42名同学,学校位他们购置桌椅,一
张桌子24元,一张椅子11元。买桌椅各花多少钱?一共
花了多少钱?
五、课堂小结
乘法的教案7
教学内容:
p5.第1--4题
教学目标:
进一步掌握除法的验算方法,学会用乘法验算除法。培养解决问题之后进行反思的意识。和认真负责的学习态度。
教学过程:
一、练习指导
1、练习一.1
独立尝试进行口算,再指名汇报得数。
教师选择其中几题要求说出口算方法。
2、用竖式计算并验算
出示题目:93÷3 85÷4 46÷2 67÷3
尝试练习,并指名板演。
交流评析,要求口述算法。
3、练习一.3
出示表格题,引导理解题意。
学生独立完成。
班级汇报交流。
二、基本训练
1、 学校买了68只皮球,借出13只,剩下多少只皮球?把剩下的皮球平均借给5个班级,每个班级能借到多少只?
(读题后引导学生分析题目,能从条件入手正确解答。)
2、学校买了68只皮球,借出13只。把剩下的.皮球平均借给5个班级,每个班级能借到多少只?
(读题后引导学生将以上2题进行对比,找出其异同点,并引导学生正确分析,正确解答。)
3、练习一.4
独立审题后学生尝试解决这两个问题。
组织交流,重点讨论第二个问题是怎样解决的。
三、全课总结
四、拓展练习:
p6.思考题。
五、作业:
p5.2、4
乘法的教案8
教学目标:
1.结合具体事例,经历运用乘法运算定律计算并解答简单实际问题的过程。
2.能灵活运用乘法的运算定律进行简便计算,体验计算方法的多样化。
3.在选择合理的灵活的方法进行计算的过程中,体验乘法运算定律在解决实际问题中的价值,将数学与生活紧密联系起来。
教学重点:
1.体验算法的多样性,并能选择最简捷最适合的解题方法。
2.体验运用乘法运算定律解决实际问题的简便性。
教学难点:
运用乘法运算定律解决简单问题的过程。
教学过程:
一、情景导入
以一首诗开启今天的数学课堂,《钱塘湖春行》,教师配乐朗诵。
读完此诗,你有没有感受到春的气息,春天青山绿水、鸟语花香,到处一派生机勃勃的景象,春天也是郊游的季节。这个春天,我们去了科技馆与人民公园,我们马上还要去银川研学旅行了,在去之前我们先解决一些隐藏在这次旅行中的数学问题,你有信心来解决吗?
问题一:
1.出示例题:四年级有102名师生要去研学旅行,平均每人的费用25元,那么师生这次旅行共需要多少钱?
①指明学生读题,明确已知条件和所求问题,询问怎么列式?为什么用乘法?②要求:学生独立计算之后,再与四人小组交流算法。
③师巡视收集不同算法。(关注运用乘法运算定律进行计算的情况。)
2.展示交流算法。(算法预设如下)
A:笔算
1 0 2
× 2 5
5 1 0
2 0 4
2 5 5 0
B:口算
100×25=2500(元)
2×25=50(元)
2500+50=2550(元)
C:乘法结合律
25×102
=25×(2×51)
=25×2×51
=50×51
=2550(元)
D:乘法结合律
102×25
=102×(5×5)
=102×5×5
=510×5
=2550(元)
E:乘法分配律
102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
通过刚才咱们用多种方法求解102×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)
教师板书102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
答;师生这次旅行共需要2550元钱。
4.揭示课题,今天我们就来学习用乘法简便运算来解决生活中的数学问题。
5.如果我把题中条件稍加改动,你还会不会算?
师改题104人,,每人25元。学生口答,教师板书
6.总结:一个接近整百却大于整百的数乘另一个数,我们可以把它看成整百数加一个数的和乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题二:
我们继续往下研究。
1.在102人中有4位是教师,学生自由98人,这些学生应交多少钱?指名读题列式。
要求:先独立完成,再同桌交流算法。
展示交流算法。(算法预设)
98×25
=(100-2)×25
=100×25-2×25
=2500-50
=2450(元)
答;这些学生应交2450元钱。
3.如果我把题中条件稍加改动,你还会不会算?
99人是学生,每人28元,一共多少钱?学生口答,教师板书。
4.总结:一个接近整百却小于整百的数乘另一个数,我们可以把它看成整百数减一个数的差乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题三:
继续往下挑战
1.去春游的学生中有36人是四年级(2)班的学生,四年级(2)班的`学生应交多少钱?
要求:学生自由读题,独立完成。
2.集体交流展示算法。(算法预设)
A:36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
B:36×25
=(40-4)×25
=40×25-4×25
=1000-100
=900(元)
3.通过刚才咱们用多种方法求解36×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)教师板书
36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
答:四(1)班学生应900元钱。
4.总结:如果是特殊数25乘另一个数,可以把另一个数拆分成4乘几的形式,再利用乘法结合律来计算,从而让计算变得更加简便。
二、巩固反思
通过刚才的学习,老师想知道大家为什么能算的又快又准确,有没有什么技巧与方法,能跟老师分享一下吗?
学生自由发言
总结:①两个数相乘,如果一个因数是接近整十、整百或整千的数,可以将这个数写成整十、整百或整千的数加或减一个数的形式,再运用乘法分配律进行计算,会使计算简便。
②如果是特殊数25(或125等)乘另一个数,可以把另一个数拆分成4乘几(或8乘几)的形式,再运用乘法结合律进行计算,会使计算简便。
一次简单的出游,竟然隐含着这么多的数学问题,但都被我们的数学小能手们一一解决,大家说学好数学有没有必要?学好数学可以解决我们生活中的很多问题。
三、课堂小结
这节课你有什么收获?
四、板书设计
乘法简便运算
资源文件列表:
乘法的教案9
教学内容
教科书第9~11页的例5、例6,练习三的第9题。
教学目的
1、使学生知道整数乘法的运算定律对分数乘法同样适用。
2、使学生能够运用所学的运算定律进行一些简便运算。
3、使学生知道在运算时应用了哪些运算定律,以培养学生的思维能力。
教学过程
一、复习
指名说一说在整数乘法中学过哪些运算定律(乘法交换律、乘法结合律、乘法分配律)。学生说出字母表达式或用语言叙述都可以。对说出字母表达式的`学生,最好让他们再说一说每个运算定律是什么意思。然后用课件结合具体例子进行说明。
二、新课
1、整数乘法运算定律推广到分数乘法。
出示下面三组算式,让学生说一说每组算式的左右两边有什么样的关系。
× ○ ×
( × )× ○14×( × )
( + )× ○ × + ×
先让学生观察每组中的两个算式有什么特点。然后算出左右两边的得数,看看每组的两个算式有什么样的关系,并分别做出结论。如,根据 × = × ,可以做出“整数乘法的交换律对于分数乘法也适用”的结论。
最后做出“整数乘法的交换律、结合律和分配律,对于分数乘法同样适用”的结论。
让学生用字母表示每一个运算定律,教师板书:
a×b=b×a
(a×b)×c=a×(b×c)
(a+b)×c=a×c+b×c
教师:“这三个等式中的字母可以表示什么数?”(整数、小数、分数。)
2、教学例5、例6(运用乘法运算定律使分数乘法计算简便)。
教师:“我们已经知道应用乘法运算定律可以使一些整数、小数的乘法计算简便,在分数乘法中应用运算定律也可以使一些计算简便。”
(1)课件展示教学
例5。 × ×5
=×5×(应用了什么运算定律?)
=
出示例5,让学生仔细观察,题里的已知数有什么特点。( 和5可以约分,所以可以先乘。)
然后,教师问:“这种简便方法是应用了乘法的什么运算定律?”(乘法交换律和乘法结合律。)
乘法的教案10
教学目标:
1.复习两位数乘除法。
2.在具体的情景中培养学生运用已有的方法解决问题。
3.培养学生节约用水的意识和习惯。
教学重点:
在解决具体问题的过程中巩固两位数乘除法的计算。
教学难点:
能从不同的角度来解决两步(或三步)的应用题。
教学用具:
教学课件
教学过程:
一、新课导入
水对我们人类来说非常重要,世界的个别地区已经开始缺水,我们为了节约水源,大家应该从小行动起来,养成人人节约用水的习惯,你看小胖家行动的如何?
二、新课探究
(一)探究一
小胖的想法和我们是一样的,他决定从身边的小事的做起,节约用水。
出示:小胖家如果每天节约水30千克。
你能根据这个条件提出一些什么数学问题呢?
学生反馈:一周可以节约多少千克水呢?
一个月可以节约多少千克水呢?(按30天计算)
一年可以节约多少千克水呢?(按365天计算)
你们能帮他算一算吗?学生练习、汇报
这道题你是怎么想的,数量关系是什么?怎样列算式?在计算的时候要注意什么呢?
出示:当因数末尾有零的时候,可以先把零前面的数相乘,再看因数末尾一共有几个零,就在得到的积的末尾添上几个零。
(二)探究二
实际上节约水资源也可以节约水费的开支,关于水费的问题小兔帮小胖算了这样一笔帐
出示:小胖家去年共缴了1224元的水费,它想请大家帮它算算小胖家平均每个月缴多少元的水费?
学生练习、汇报,由学生自己讲解
(问:这道题你是怎么想的,数量关系是什么?怎样列算式?)
一年的水费12个月=平均每月要缴的元数
122412=102(元)
问:在计算除数是两位数的除法的时候,你又有什么话想对大家说呢?
出示:从高位除起,除到被除数的.哪一位,商就写在那一位上,哪一位上不够除就用0来占位。
(三)探究三
出示:小胖家今年准备平均每个月比去年节省4元水费,照这样计算,今年预计一共要缴多少元水费?
问:这里哪些词的意思不理解,你可以提出来?照这样计算是什么意思呢?是照怎样的计算呢?
请大家自己试着做一做,有困难可以先和小朋友商量一下。
学生尝试、汇报交流
师:①说说你们是怎么想的?
②这三种解法有什么区别和联系呢?
③这样的两、三步计算题的运算顺序是什么?
三、课内练习
1. 练习一:计算下列各题
4512=
45102=
4501200=
50414=
428414=
3264032=
师:在计算的时候有什么要提醒大家的吗?
2. 练习二:括号中应填几?
()32=256
1430()=13
()109=109
128+()=2987
括号里的数该如何求?
3. 练习三:实际运用
小胖和小巧在游泳馆练习游泳。(从泳道的一端游到另一端算一次)
①小巧在泳道中泳一次要37秒。她用同样的速度游了13次,需要多少秒?
②小胖在泳道中用了7分12秒游了12次,每次需要多少秒?
③他们俩谁游得快呢?如果他们同时出发,都游了14次。相差多少秒呢?
四、课堂小结
1.理解和掌握两位数乘除法的计算方法。
2.在计算四则混合运算的时候,要先算乘、除,再算加、减;有圆括号的要先算圆括号里的。
板书
复习两位数乘、除
122412=102(千克)答:略
方法一 方法二 方法三
在计算四则混合运算的时候,要先算乘、除,再算加、减;有圆括号的要先算圆括号里的。
乘法的教案11
教学内容:
教科书第70页例2,练习十五第4~7题。
教学目标:
引导学生体验估算的过程,初步了解两、三位数乘一位数的估算方法,培养学生的估算意识。
教具、学具准备:
多媒体课件幻灯片。
教学过程:
一、提出问题
1.用多媒体幻灯片逐一出示各种图片,创设问题情境,引导学生提出用乘法计算的问题。
图片内容是:
邮局邮票出售处,有的邮票一枚80分,有的邮票一枚60分。
百货商店鞋柜,一双旅游鞋78元,一双皮鞋164元。
电影院售票处,日场一张电影票15元,夜场一张电影票20元。
小袋鼠蹦跳一次约2米,小袋鼠蹦跳33次。
文具商店柜台,每盒图钉120个,每包日记本25本。
2.出示课本第70页例2主题图:三年一班29个同学去参观航天航空展览,门票每张8元。
请学生提出问题。老师在学生提出问题的基础上,补充提出:如果老师这时只带250元钱去,够吗?
二、尝试解决
教师先请学生猜一猜带250元够不够?再请学生思考怎么知道我们猜得对不对呢?看看小精灵是怎么说的?
怎么才能知道8×29大约是多少呢?能不能用我们前面学过的计算方法来解决这个问题?
启发学生想出前面我们已经学过整十数乘一位数的乘法口算,我们可以把29看成最接近的整十数来估算。
因为8×30=240,所以8×29的积比较接近240,我们可以列成算式8×29≈240。再由小精灵介绍约等号。
可见带250元够买门票。
三、拓展引申
估计下列几道乘法算式的积大约是多少?
32×649×5218×4581×2
组织学生小组讨论,然后全班交流,说明各应看成几百或几十。说明因数是三位数时,只要看成最接近的整百数即可。
四、巩固练习
1.完成课本第70页“做一做”中的4道题。先由学生独立计算,然后集体订正答案。结合订正答案的过程让学生说一说估算的`过程。
2.用上课开始时呈现的几个问题情境和学生们提出的问题,让学生估算结果,找出答案。
3.请学生举出几个日常生活中估算的例子。
五、课堂小结
1.这节课开头我们碰到了什么问题?是怎么用数学的方法来解决的?
2.上这堂课,你有什么感受和体会?(生活中有许多数学问题,我们应尽可能用学过的知识和方法来解决。)
乘法的教案12
一、教学目标
1.使学生学会口算两位数乘一位数、整十数乘一位数的方法。
2.通过观察、交流等活动培养学生的观察能力、口头表达能力和演绎推理能力。
3.联系生活,培养学生用所学知识解决实际问题的能力和良好的数感。
二、教学重点
整十数乘一位数的口算方法。
三、教学难点
发现口算乘法的规律。
四、教学具准备
课件、口算题卡。
五、教学过程
(一)复习旧知
1.口算下面各题(出示口算题卡):
30×450×5300×7200×860×4
32×325×242×223×311×8
2.指名让学生说说30×4、200×8、42×2的口算方法。
(二)学习新知
1.探究两位数乘一位数的口算方法。
(1)出示例题,要求学生认真看图。
(2)观察主题图,你能发现哪些数学信息?能提出什么数学问题?
生:我发现每筐装15盒草莓,买了3筐,一共有多少盒?
(3)怎样列式?15×3
(4)说说你是怎样算的?
预设1:
10×3=30
5×3=15
30+15=45
预设2:
小结:两位数乘一位数时,先用两位数中十位上的.数字与一位数相乘,再用两位数中个位上的数字与一位数相乘,最后再将两个积相加。
2.探索整十数乘一位数口算方法
(1)分组进行讨论150×3的结果是多少,你是怎样想的?
(2)小组交流,汇报各种想法:
150×3=100×3=300
50×3=150
300+150=450
(对于学生的方法,尽可能板书在黑板上,方便全体同学了解不同方法的口算过程。)
(3)学生独立完成P41/做一做,然后在组内说说你是怎样想的?
115=144=156=234=
1105=1404=1506=2304=
(4)观察:上述算式中,一个因数末尾0的个数与积末尾0的个数有什么关系?
师生共同归纳小结:整十数乘一位数时,先把因数中0前面的数字与一位数相乘,然后在乘积的末尾添上1个0。
(三)巩固练习
1.比一比,看谁算得快。
(四)课后小结:这节课你有什么收获?还有什么问题吗?
乘法的教案13
教材分析:
乘法分配率是进行简便计算的一个难点,由于学生没有足够相关的生活经验和类似的认识,因此比较难于把握。故把重点放在引导学生探索问题,通过学生互动,发现规律,提出设想,验证结论,最后灵活运用结论解决问题。
学情分析:
由于平时进行课堂教学改革,学生学习数学的热情比较高,一部分学生还喜欢发表自己的见解,借以带动全班的学习,所以我决定创设情景,调动学生自主学习,通过操作、交流突破难点。
学习目标:
1.动手“做”数学;
2.充分发挥“兵”帮“兵”的作用;
3.组织学生解决问题。
设计理念:
根据课程改革的目标,实现以人为本的现代教学观,切实改进课堂教学,改变传统牵着学生走的教学行为。
学生是按照自己的思维方式去认识世界的,因此要组织好学生的活动,让学生通过探索,自己去发现问题,提出问题,从而解决问题,真正落实学生的主体地位。在教学中,教师能根据学生的情况善导,体现学生会学,并使学生学会科学的学习方法,提高学习质量,强化学习兴趣,不断发展和完善自己。
教学媒体设计:
1.自制多媒体课件,主要是与课题相关的练习(以“小灵通”、摘取“智慧果”的形式激发兴趣,并配备音乐调节情绪,同时利用Powerpoint制作板书设计加大课堂密度)。
2. 实物投影仪;学生准备2厘米和3厘米的小棒各2捆。
教学过程,设计及分析:
一、创设故事情景
教授将手指蘸入煤油和蜜糖的杯子里,用嘴尝得津津有味,但学生跟着做却无一不上当,因为教授伸进的是食指,吸的是中指,以此说明观察的重要性,告诫学生注意下面的操作要认真观察,这其实也是一种思维品质。
二、导入
1.用2厘米和3厘米的小棒各两根,围成一些图形,说一说你用哪些简便的方法算出小棒的总长度,从中发现什么。
学生:(3+2)×2=3×2+2×2
师:你们是怎样发现的?
学生:①通过计算,知道结果是一样的;②无论怎样摆,都是4根小棒,所以总长度是不变的。
(通过学生的摆和说,引导他们向乘法分配率的表达形式逼近)
2.用2厘米和3厘米的小棒各3根,进行类似上面的操作。
学生:这样摆比较有规律,很容易看出小棒的总长度,并且可以知道(3+2)×3=3×3+2×3)。
(让学生把有规律的摆法投影出来)
3.用2厘米和3厘米的小棒各4根,仿照上面再操作。
要求:在学生摆拢以后,以小组为单位进行参观和评价。让学生把有规律的做法进行实物投影,并介绍想法和发现。
学生:
3×4+2×4=(3+2)×4 (8+2)×2=8×2+2×2
7×2+3×2=(7+3)×2 (3+2)×4=3×4+2×4
(6+4)×2=6×2+4×2
分析:通过参观,知道有各种各样的摆法;通过评价,知道我们能创造数学,
发现规律,能灵活地运用知识解决问题,并进一步向乘法分配率逼近。
4.猜想:你能说出类似的例子吗?
(学生自由说,教师把有代表性的写在黑板上。)
如:(12+72)×8=12×8+72×8 25×84+75×84=(25+75)×84
…… …… …… …… …… …… …… …… ……
5.小组讨论。
(1) 根据以上算式的特征进行讨论,讨论后以小组的形式发表见解;
(2) 师生共同归纳各种见解:两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。
教师:这就是乘法分配率。
板书课题:乘法分配率。
分析:综观传统的教学方法,教师还是牵着学生走,所以乘法分配率是强加给学生的`,故学生就容易出错,更谈不上灵活运用了。根据学生的年龄特点和心理特点,教学应该从直观思维入手,而以抽象思维结束,因此,我就采用了“操作──探究──发现”的教学模式进行教学了。
三、新授
1.自学书本;
2.质疑,提出新见解;
3.师生共同解决问题。(充分发挥学生互助作用,以点带动全班的学习。)
4.教师:用公式怎样表示乘法分配率?谈谈你的看法。
(要求学生正确读出公式,引出乘法分配率可以进行简便计算。)
5.形成性练习:用简便方法计算下面各题。
35×37+65×37 102×45 38×99+38
要求:学生想办法,学生说思路,学生评,学生互助并加以改正。
四、小结
(学生以谈体会的形式进行,包括方法、感觉、情感和态度方面)
五、拓展性练习
计算下面各题:12×25 63×25-59×25 38×101-38
说明:这些题目学生是可以用多种方法计算的,目的是训练发散性思维,提高灵活解决问题的能力。在学法上充分发挥“兵”帮“兵”的指导作用。
六、反馈生活中的数学
师:这节课我们学习了乘法分配率,在日常生活中我们也经常运用乘法分配率解决一些问题,你能举出例子吗?
(同位互说,或者小组商量,再发言。)
七、布置作业
1.基础题:第66页第4、7题。
2.思考题:第66页插图。
乘法的教案14
一教学目标
1.结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2.借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3.在探索与交流活动中培养观察、推理的能力。
二学情分析
1.由于分数乘法的计算过程要比整数乘法的极端过程复杂,因此学生对于这方面知识的学习有很大的吃力感,所以加强学生的计算能力是学习这方面知识的保证。
2.学生认知发展分析:小学学生现在的认知基础还是以整数乘法为主,他们习惯于学习整数乘法方面的知识和解题方法与思路。因此学习本节课内容主要从整数入手,逐渐加强学生对分数乘法的认识。
3.学生认知障碍点:学生在刚开始学分数乘法时可能有时想不到先约分,后计算。
三重点难点
教学重点:理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:理解分数乘整数的计算方法。
四教学过程
4.1分数乘整数
4.1.1教学活动
活动1【导入】复习旧知,引出课题。
1.复习题。
(1)列式计算。
5个12是多少?9个11是多少?8个6是多少?
提问:你还记得整数乘法的`含义吗?
(2)计算:
提问:分母相同的分数相加,如何计算?
2.引出课题。
第二道题还可以怎么计算?今天我们就来学习分数乘法。
活动2【活动】创设情境,探究分数乘整数
1.教学分数乘整数的意义。
出示例1,自由读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示:
题中的:“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思什么?(每人吃了整个蛋糕的)
每人吃了整个蛋糕的,可以画图表示吗?怎样表示?
3个人呢?
求3人一共吃了多少个,
就是要求什么?怎样列式计算?
用加法计算:+ + = = (个)
求3个的和是多少,还可以怎样列式?
用乘法计算:×3
这个乘法算式与我们之前学习的有什么不同?分数乘整数与整数乘法意义相同,都表示求几个相同加数的和的简便运算。区别在于,在整数乘法中,相同加数是整数,在分数乘整数中,是分数。板书课题:分数乘整数
2.教学分数乘整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:怎样计算?分数乘整数第一次遇到,能转化成我们学过的式子来计算吗?为什么?
引导学生说出表示求3个的和。板书:+ + 。
学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)
补充两个例子:若每人吃个,×3=
若每人吃个,×3=
今后每次都要转化成分数加法来计算吗?分数乘整数的计算有没有什么规律可循呢?
(边说边加虚线)
(2)引导观察:分子部分、分母与算式中两个数有什么关系?(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
(3)概括总结计算方法。(同桌互说)
请学生总结。教师板书。
(4)介绍约分及注意事项。
根据的计算过程,指出:计算过程中,分子、分母能约分的可以先约分,然后再乘,结果相同。教师示范,注意约分书写格式:约得的数要与原数上下对齐。追问:你知道为什么先约分,再相乘,结果不会变吗?(还是根据分数的基本性质)那么请你比一比,想一想,计算结果约分和在过程中约分,你倾向于哪一种,请说明理由。
3.反馈练习:练习一第1题、做一做。
活动3【活动】全课小结
今天学习的主要内容是什么?关于分数乘整数有哪些收获?
活动4【练习】课堂作业
A部分:练习一第2、3题。
B部分:青岛地铁2号线将于20xx年底实现东段通车,全线共设车站22个,平均每两个站之间距离是五分之六千米。青岛地铁2号线全程长是多少千米?
乘法的教案15
教学内容:
教材59页和相关练习
教学目标:
1、使同学能结合具体情境,在积极参与和讨论合作学习的过程中进行乘法的估算,会说明估算的思路。
2、能运用所学知识解决日常生活中简单的实际问题。
3、给同学创设主动探索估算知识的`空间,培养估算意识提高估算能力。
教学重点、难点:
探索乘法估算的方法,学会乘法估算。
教具、学具准备:主题图等。
教学流程:
一、知识迁移,导入新课
1、你能说出下列各数的近似数各是多少吗?
69、22、74、87、99、18
2、下列竖式,你能估算各题的结果吗?你是怎么想的?
18×4
51×7
89×5
22×8
37×3
71×6
二、创设情境,激发兴趣:
1、 导言:同学们都在多媒体教室里上过课,那么你们知道多媒体教室里有多少排椅子?每排有多少个座位呢?哪个同学知道?愿意来说一说吗?
2、 出示P59例2情境图
引导同学观察:情境图中提供了有关的哪些信息?小明同学提出了什么问题?
三、迁移类推,探究新知
教学例2.
“350名同学来听课,能坐得下吗?”你能根据图中提供的信息解决这个问题吗?试试看。
1、小组合作交流——你用什么方法估算?
2、指名汇报。师小结整理如下:
要判断350名同学能否坐得下,必需估算出多媒体教室大约有多少个座位。
方法一:18≈20
22≈20
20×20=400(个)
所以,350名同学能坐下。
方法二:18≈20
22×20=440(个)
所以,350名同学能坐下。
方法一:22≈20
18×20=360(个)
所以,350名同学能坐下。
3、小结:同学们太棒了,能根据已学的估算知识,想出了这么多的好方法,可见,估算在我们日常生活中的作用太大了,那么,谁能告诉老师,你是怎么估算的呢?同时出示课题《两位数乘两位数—乘法的估算》
4、小组合作交流后,引导同学总结出估算的方法:
估算时,先把两位数看成最接近它的整十数,然后再进行计算。
四、巩固新知
1、第59页做一做。
2、第61页第7题:投影出示情境图
引导同学观察图,说说你从图中得到什么信息?
①人人动手独立完成,将估算结果写在亮题板上。
②同桌交流,说说估算的方法。
展示同学的试题,说说你的估算方法,集体讲评。
3、第61页第8题:
4、第62页第9题,夺红旗小游戏。
①
以小组为单位,按箭号所指的方向开始计时。
②
请优胜组派代表介绍经验。
③
给优胜小组插上小红旗。
五、全课总结:
这节课,你又有什么收获?
六、随堂作业