一次函数教案

时间:2022-11-09 13:47:14 教案大全 我要投稿

一次函数教案

  作为一名老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?以下是小编为大家整理的一次函数教案,欢迎阅读与收藏。

一次函数教案

一次函数教案1

  教学过程设计

  一、复习回顾

  1.一次函数的定义。

  2.一次函数的图象。

  3.直线y=kx+b与方程的联系。

  那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

  教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

  设计意图:回顾所学知识作好新知识的衔接。

  二、导探激励

  问题1:我们来看下面两个问题有什么关系?

  1.解不等式5x+6>3x+10.

  2.当自变量x为何值时函数y=2x—4的值大于0?

  教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x?在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.

  由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,?求自变量相应的取值范围.

  问题2:作出函数y=2x—5的图象,观察图象回答下列问题:

  (1)x取何值时,2x—5=0?

  (2)x取哪些值时,2x—5>0?

  (3)x取哪些值时,2x—5<0?

  (4)x取哪些值时,2x—5>3?

  教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

  设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图

  象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

  学生可以用不同方法解答,教师意图是尽量用图象求解。

  问题3:用画函数图象的方法解不等式5x+4<2x+10

  设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,?自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.

  学生活动:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:

  方法一:原不等式可以化为3x—6<0,画出直线y=3x—6的图象,可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=3x—6<0,所以不等式的解集为:x<2.方法二:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10可以看出,它们交点的横坐标为2.当x>2时,对于同一个x,直线y=5x+4?上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,?所以不等式的解集为:x<2.

  以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这

  种函数观点认识问题的方法,对于继续学习数学很重要.

  三、巩固练习

  1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y<2.

  2.利用图象解出x:

  6x—4<3x+2.

  [解]1.(1)方法一:作直线y=3x+8的图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.

  方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,?从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.

  (2)方法一:画出y=3x+8的图象,从图象上可以看出当x<—2时,?对应的`函数值都小于2.所以自变量x的取值范围是x<—2.

  方法二:要使y<2即3x+8<2,它可变形为3x+6<0,作出直线y=3x+6?的图象可以看出它与x轴交点横坐标为—2,只有当x<—2时对应的函数值才小于0.?所以自变量x的取值范围是x<—2.

  2.方法一:6x—4<3x+2可变形为:3x—6<0.作出直线y=3x—6的图象.?从图象上可看出:当x<2时,这条直线上的点都在x轴下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解为x<2.

  方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x<2时,直线y=6x—4在直线y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解为x<2.

  四.随堂练习

  1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.

  2.利用图象解不等式5x—1>2x+5.

  五.课时小结

  本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.

  六.课后作业

  习题14.3─3、4、7题.

  七.活动与探究

  a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济

  教学反思:

  本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一

  个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。

一次函数教案2

  一、读一读

  学习目标:

  1、熟练证明的基本步骤和书写格式;

  2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。

  二、试一试

  自学指导:平行线判定公理: 同位角相等,两直线平行

  1、自学教材P229-231,学完后合上课本完成下列各题:

  (1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的.同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b

  由此得,平行线判定定理1: ;

  (2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的判定定理证明a∥b

  由此得,平行线判定定理2: .

  三、练一练

  1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决

  2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°

  求证:a∥b 你有几种证明方法?请选择其中两种方法来证明

  四、记一记:

  证明命题的一般步骤:

  (1)根据题意画出图形(若已给出图形,则可省略)

  (2)根据题设和结论,结合图形,写出已知和求证;

  (3)经过分析,找出已知退出求证的途径,写出证明过程;

  (4)检查证明过程是否正确完善。

一次函数教案3

  学习目标(学习重点):

  1. 针对函数及其图象一章,查漏补缺,答疑解惑;

  2. 一次函数应用的复习.

  补充例题:

  例1.如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系

  (1)B出发时与A相距 千米;

  (2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;

  (3)B出发后 小时与A相遇;

  (4)求出A行走的路程S与时间t的函数关系式;

  (5)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米,在图中表示出这个相遇点C.

  例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴, y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.

  (1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;

  (2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a, b的值.

  例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.

  (1)求s与t之间的函数关系式.

  (2)与图③相对应的.P点的运动路径是: ;P点出发 秒首次到达点B;

  (3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.

  课后续助:

  1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.

  (1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式

  ①用水量小于等于3000吨 ;②用水量大于3000吨 .

  (2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.

  (3)若某月该单位缴纳水费1540元,则该单位用水多少吨?

  2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.

  (1)有月租费的收费方式是 (填①或②),月租费是 元;

  (2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;

  (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

  3.某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:

  (1)在y轴( )内填入相应的数值;

  (2)沙尘暴从发生到结束,共经过多少小时?

  (3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.

  (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?

  4.如图所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得的指距与身高的一组数据.

  指距d/cm 20 21 22 23

  身高h/cm 160 169 178 187

  (1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)

  (2)某人身高为196cm,一般情况下他的指距应是多少?

  5.小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.

  (1)请问汽车行驶多少小时后加油,中途加油多少升?

  (2)求加油前油箱剩余油量y与行驶时间t的函数关系式;

  (3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.

一次函数教案4

  知识要点

  1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,

  相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。

  2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.

  3、正比例函数y=kx的性质

  (1)、正比例函数y=kx的图象都经过

  原点(0,0),(1,k)两点的一条直线;

  (2)、当k0时,图象都经过一、三象限;

  当k0时,图象都经过二、四象限

  (3)、当k0时,y随x的增大而增大;

  当k0时,y随x的增大而减小。

  4、一次函数y=kx+b的性质

  (1)、经过特殊点:与x轴的交点坐标是 ,

  与y轴的交点坐标是 .

  (2)、当k0时,y随x的增大而增大

  当k0时,y随x的增大而减小

  (3)、k值相同,图象是互相平行

  (4)、b值相同,图象相交于同一点(0,b)

  (5)、影响图象的两个因素是k和b

  ①k的正负决定直线的方向

  ②b的正负决定y轴交点在原点上方或下方

  5.五种类型一次函数解析式的确定

  确定一次函数的解析式,是一次函数学习的重要内容。

  (1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式

  例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

  解:把点(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函数的解析式为:y=3x-12

  (2)、根据直线经过两个点的坐标,确定函数的解析式

  例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),

  求函数的表达式。

  解:把点A(3,4)、点B(2,7)代入y=kx+b,得

  ,解得:

  函数的解析式为:y=-3x+13

  (3)、根据函数的图像,确定函数的解析式

  例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x

  (小时)之间的关系.求油箱里所剩油y(升)与行驶时间x

  (小时)之间的函数关系式,并且确定自变量x的取值范围。

  (4)、根据平移规律,确定函数的解析式

  例4、如图2,将直线 向上平移1个单位,得到一个一次

  函数的图像,那么这个一次函数的解析式是 .

  解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位

  后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,

  得 ,解得: ,函数的解析式为:y=2x+1

  (5)、根据直线的对称性,确定函数的解析式

  例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。

  例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。

  例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。

  经典训练:

  训练1:

  1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。

  (1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?

  (2)若y是x的函数,试写出y与x之间的函数关系式 。

  训练2:

  1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函数有___ __;正比例函数有____________(填序号).

  2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )

  A.k1 B.k-1 C.k1 D.k为任意实数.

  3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.

  训练3:

  1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.

  2. 一次函数y=mx+n的图象如图,则下面正确的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.

  4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;

  若y随x的增大而增大,则k__________.

  5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )

  训练4:

  1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.

  2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .

  3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。

  4、已知一次函数y=kx+b,在x=0时的`值为4,在x=-1时的值为-2,求这个一次函数的解析式。

  5、已知y-1与x成正比例,且 x=-2时,y=-4.

  (1)求出y与x之间的函数关系式;

  (2)当x=3时,求y的值.

  一、填空题(每题2分,共26分)

  1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .

  2、若直线 和直线 的交点坐标为 ,则 .

  3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .

  4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .

  5、函数 ,如果 ,那么 的取值范围是 .

  6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.

  7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .

  8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的三角形的面积为 ,则 .

  9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .

  10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .

  11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.

  12、 为 时,直线 与直线 的交点在 轴上.

  13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .

  二、选择题(每题3分,共36分)

  14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )

  15、若直线 与 的交点在 轴上,那么 等于( )

  A.4 B.-4 C. D.

  16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )

  17、直线 如图5,则下列条件正确的是( )

  18、直线 经过点 , ,则必有( )

  A.

  19、如果 , ,则直线 不通过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是

  A. B. C. D.都不对

  21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )

  图6

  22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )

  A.4 B.5 C.6 D.7

  23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )

  A.1个 B.2个 C.3个 D.4个

  24、已知 ,那么 的图象一定不经过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )

  三、解答题(1~6题每题8分,7题10分,共58分)

  26、如图8,在直角坐标系内,一次函数 的图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.

  27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?

  28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.

  (1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.

  (2)在同一坐标系中,画出这三个函数的图象.

  29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.

  (1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.

  (2)小王家第一季度交纳电费情况如下:

  月份 一月份 二月份 三月份 合计

  交费金额 76元 63元 45元6角 184元6角

  问小王家第一季度共用电多少度?

  30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.

  (1)求 与 之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]

  31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?

  32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)

  路程/千米 运费(元/吨、千米)

  甲库 乙库 甲库 乙库

  A地 20 15 12 12

  B地 25 20 10 8

  (1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).

  (2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?

一次函数教案5

  教学目标:

  1、使学生会画出一次函数和正比例函数的图象;

  2、结合图象,使学生理解正比例函数与一次函数的性质;

  3、在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念.

  4、通过画正比例函数与一次函数的图象,培养学生的动手能力;

  教学重点:

  正比例函数的图象及性质,因为图象是研究性质的前提,而研究性质又是进一步研究函数的基础.

  教学难点:

  由函数的图象归纳得出函数的性质及对性质的理解.因为由图象归纳函数的性质是学生首次接触,学生没有基本思路,而且学生思维的深刻性和全面性也不够.

  教学过程:

  一、新课引入:

  提问:

  1、上节课我们介绍了两种特殊的函数,是哪两种?

  2、什么是一次函数?什么是正比例函数?

  由学生口答之后互相评价,纠正出现的错误.

  这节课我们将要进一步研究这两种函数,主要来研究它们的图象和性质.(板书)

  二、新课讲解:

  提问:

  1.以前我们曾画过y=x的图象,它的图象是什么样的?

  2.上节课的作业我们曾在同一直角坐标系中画出了三个函数图象:y=2x,y=2x-1,y=2x+1,这个函数图象是什么样的?

  3.函数y=x,y=2x,y=2x-1,y=2x+1各是什么函数?

  4.正比例函数与一次函数有什么样的关系?

  5.你能否由此猜测:一次函数的图象是什么样的?

  由上述问题,学生很容易得到结论:一次函数的图象是一条直线.教师再加以强调总结并板书.

  6.由几何知识可得,要画一条直线只要知道几点就可以了?

  由此问题可给出画一次函数图象的方法:只要先描出两点,再连成直线就可以了.

  练习一:画正比例函数y=0.5x与y=-0.5x的图象.(出示幻灯)

  提问:你准备取哪两点来画这两个图象?为什么?

  由学生充分讨论,对比之后,得出两点,让学生明白取这两点的好处.然后由一名同学上黑板画图,其他同学在练习本上完成.最后再加以总结板书:画正比例函数y=kx的图象,通常取(0,0)和(1,k)两点连线.

  提问:

  1.看y=0.5x的图象,随着x的值增大,y的值有怎样的变化趋势?

  2.再看y=-0.5x的图看,随着x的值增大,y的值有怎样的变化趋势?

  3.你认为这两个函数图象的变化趋势不同,是由什么因素影响的?

  这几个问题可由学生讨论回答,有助于培养学生的观察、分析问题的能力和思维的深刻性.在学生回答的.基础上,教师加以总结和板书:

  一般地,正比例函数y=kx有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小.

  我们知道正比例函数是一次函数的特例,那么,正比例函数的这个性质一次函数是不是具有呢?看练习:(出示幻灯)

  练习二:在同一直角坐标系中画出下列函数的图象:y=2x+1,y=-2x+1.

  提问:要画这两个函数的图象,你认为取哪两点较好?

  由学生进行充分的讨论,适当地向学生提示:在坐标平面内,什么样的点好找?(轴上的点)由此启发学生恰当地找出两点,便于画图,形成规律.然后由一名同学上黑板画图,其他同学在练习本上完成.最后加以总结,板书:

  连线.

  注意:通常,我们把一次函数y=kx+b的图象叫做直线y=kx+b.

  提问:观察你所画的图象,一次函数y=kx+b是否具有同正比例函数y=kx相同的性质?

  有了上次的经验,学生很容易就能得到结论,教师在此基础上总结,板书:

  一般地,一次函数y=kx+b有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小.

  练习三:

  1.P.109中1直接画在书上;

  2.P.117中2填在书上,口答;

  3.(出示幻灯)画出函数y=3x+12的图象,利用图象:

  (2)求y=3,9,-3时对应的x的值;

  (3)求方程3x+12=0的解.

  分析:(1)这道题是利用图象解决问题,所以应先画出图象.由一名学生板演,其他同学在练习本上完成.

  注意:由于本题的数值问题,所以x轴和y轴最好取不同的长度表示不同的数值.

  (2)若已知x(或y)的值求与它对应值y(或x),应怎样在图上找呢?例如:已知x=-2时,求y的值.由学生先讨论,然后动手作,找到y的对应值,最后回答是怎样作的.(作垂直)

  (3)你能否找到余下的x与y的对应值?

  学生作图之后,口答结果.

  (4)若求方程3x+12=0的解,看方程3x+12=0与函数y=3x+12的关系,实际就是求什么?

  学生讨论回答,然后加以总结:求方程3x+12=0的解其实就是看函数y=3x+12的图象当y=0时对应的x的值,也就是看图象与x轴交点的横坐标.

  (三)重点、难点的学习与目标完成过程

  本节课的重点是画正比例函数与一次函数的图象及由图象总结得出函数的性质.为了能使学生顺利地掌握画图的方法,首先给学生一个明确的感性认识:一次函数的图象是一条直线,再通过几何知识得到,画一条直线只要知道两点即可,然后又通过实例总结出画正比例函数图象与画一次函数的图象找哪两点较好,加以总结,形成规律,便于学生的记忆和应用.在画完图象的基础上,由学生对图象进行观察,然后教师提出关于变化的问题,对学生加以引导,使学生很顺利地得到正比例函数与一次函数的性质.整节课的关联性较强,一环扣一环,便于学生的思考.

  三、课堂小结:

  教师提问,学生思考回答:

  (1)画正比例函数y=kx的图象取哪两点?

  (2)画一次函数y=kx+b的图象取哪两点?

  (3)正比例函数y=kx与一次函数y=kx+b的性质是怎样叙述的?你认为只要记住哪个函数的性质就可以?(一次函数的性质)为什么?(正比例函数是一次函数的特例,一次函数具有的性质正比例函数必具备.)

  (4)我们是由什么得到函数的性质的?

  (5)能否考虑由解析式得到正比例函数y=kx与一次函数y=kx+b的性质呢?

  由学生讨论,看学生的程度决定是否向学生介绍这个问题.

  答:实际上,看y=0.5x.

  任取两对对应值(x1,y1)(x2,y2),如果x1>x2,由k=0.5>0,可得0.5x1>0.5x2,即y1>y2.也就是说,对于y=kx,若k>0,则y随x的增大而增大.

  类似地,可以说明y=-0.5x的性质和y=2x+1,y=-2x+1的性质.

  四、布置作业

  1.教材P.111中1、2.

  2.选做:P.112B.1

一次函数教案6

  一、学生起点分析

  八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.

  二、教学任务分析

  《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.

  为此本节课的教学目标是:

  1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.

  2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.

  3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.

  4.理解一次函数的代数表达式与图象之间的一一对应关系.

  教学重点是:

  初步了解作函数图象的一般步骤:列表、描点、连线.

  教学难点是:

  理解一次函数的代数表达式与图象之间的一一对应关系.

  三、教学过程设计

  本节课设计了七个教学环节:

  第一环节:创设情境引入课题;

  第二环节:画一次函数的图象;

  第三环节:动手操作,深化探索;

  第四环节:巩固练习,深化理解;

  第五环节:课时小结;

  第六环节:拓展探究;

  第七环节:作业布置.

  第一环节:创设情境引入课题

  内容:

  一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?

  我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

  目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.

  效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.

  第二环节:画正比例函数的图象

  内容:首先我们来学习什么是函数的图象?

  把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

  例1请作出正比例函数y=2x的图象.

  第三环节:动手操作,深化探索

  内容:做一做

  (1)作出正比例函数y= 3x的图象.

  (2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.

  请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.

  (1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?

  (2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?

  (3)正比例函数y=kx的图象有什么特点?

  明晰

  由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的.图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.

  议一议

  既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?

  因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.

  4.3一次函数的图象:同步测试

  14若直线经过第一.二.四象限,则k.b的取值范围是( ).

  A.k>0,b>0 B.k>0,b<0

  C.k<0,b>0 D. k<0,b<0

  2.已知一次函数y=3-2x

  (1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;

  (2)从图像看,y随着x的增大而增大,还是随x的增大而减小?

  (3)x取何值时,y>0?

  3.已知一次函数y=-2x+4

  (1)画出函数的图象.

  (2)求图象与x轴、y轴的交点A、B的坐标.

  (3)求A、B两点间的距离.

  (4)求△AOB的面积.

  (5)利用图象求当x为何值时,y≥0.

  《函数的图象》课后练习

  1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()

  A.y=1.5(x+12)(0≤x≤10)

  B.y= 1.5x+12(0≤x≤10)

  C.y=1.5x+10(x≥0)

  D.y=1.5(x-12)(0≤x≤10)

一次函数教案7

  一、教学目标

  知识与技能目标

  1、继续巩固一次函数的作图方法;

  2、结合一次函数的图像,掌握一次函数及其图像的简单性质。

  过程与方法目标

  1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;

  2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。

  情感与态度目标

  经历一次函数及性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。

  二、教材分析

  本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。

  教学重点:结合一次函数的图像,研究一次函数的简单性质。

  教学难点:一次函数性质的应用。

  三、学情分析

  学生已经对一次函数的图像有了一定的认识,在此基础上,结合一次函数的`图像,通过问题的设计,引导学生探讨一次函数的简单性质,学生是较容易掌握的。

  四、教学过程

  (一)做一做

  在同一直角坐标系内分别作出一次函数y=2x+6,y=2x1,y=x+6,y=5x的图象。

  (二)议一议

  上述四个函数中,随着x值的增大,y的值分别如何变化?

  学生:有的在增大,有的在减小。

  师:哪些一次函数随x的增大y在增大;哪些一次函数随x的增大y在减小,是什么在影响这个变化?

  学生讨论:y=2x+6和y=5x这两个一次函数在增大;y=2x1和y=x+6在减小;影响这个变化的是x前面的系数k的符号:当k为正数时,y随x的增大而增大;当k为负数时,y随x的增大而减小。

  师:当k>0时,一次函数的图象经过哪些象限?

  当k<0时,一次函数的图象经过哪些象限?

一次函数教案8

  【学习目标】

  1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;

  2、学会用含一个变量的代数式表示另一个变量;

  3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;

  4、会根据函数解析式和实际意义确定自变量的取值范围。

  【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。

  【学习难点】函数概念的理解;函数关系式的确定

  学习过程:

  【前置自学】

  问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.

  1.请同学们根据题意填写下表:

  t/时12345t

  s/千米

  2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

  3.试用含t的式子表示s.__s=_________________t的取值范围是

  这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.

  问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?

  1.请同学们根据题意填写下表:

  售出票数(张)早场150午场206晚场310x

  收入y (元)

  2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

  3.试用含x的式子表示y.__y=_________________x的取值范围是

  这个问题反映了票房收入_________随售票张数_________的变化过程.

  问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?

  1.请同学们根据题意填写下表:

  所挂重物(kg)12345m

  受力后的弹簧长度L(cm)

  2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

  3.试用含m的式子表示L.__L=_________________m的取值范围是

  这个问题反映了_________随_________的变化过程.

  问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r? 关系式:________

  1.请同学们根据题意填写下表:

  面积s(cm2)102030s

  半径r(cm)

  2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

  3.试用含s的式子表示r.__r=_________________s的取值范围是

  这个问题反映了___ _ 随_ __的变化过程.

  问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为Sm2,怎样用含有x的式子表示S呢?

  1.请同学们根据题意填写下表:

  长x(m)1234x

  面积s(m2)

  2.在以上这个过程中,变化的量是_____________.不变化的量是__________.

  3.试用含x的式子表示s. _______________x的取值范围是

  这个问题反映了矩形的___ _ 随_ __的变化过程.

  【展示交流】

  小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如……),有些量的数值是始终不变的(如……)。

  得出结论: 在一个变化过程中,我们称数值发生变化的量为________;

  在一个变化过程中,我们称数值始终不变的量为________;

  (一)观察探究:

  1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的.

  2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)

  归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。

  3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们看下面两个问题,通过观察、思考、讨论后回答:

  (1)下图是体检时的心电图.其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的对应值吗?

  (2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表

  (二)归纳概念:

  一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是_________,y是x的________.如果当x=a时y=b,那么b叫做当自变量的值为a时的_________.

  举例说明:

  问题一问题二问题三问题四问题五

  自变量

  自变量的函数

  函数解析式

  【达标拓展】

  1、若球体体积为V,半径为R,则V= R3.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,R的取值范围是

  2、校园里栽下一棵小树高1.8米,以后每年长0.3米,则n年后的树高L与年数n之间的函数关系式__________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,n的取值范围是

  3、在男子1500米赛跑中,运动员的平均速度v= ,则这个关系式中变量是_______、_______,常量是________.自变量是 , 是 的函数,自变量的取值范围是

  4、已知2x-3y=1,若把y看成x的函数,则可以表示为___________.其中变量是_____、_____,常量是________.自变量是 , 是 的函数,x的取值范围是

  5、等腰△ABC中,AB=AC,则顶角y与底角x之间的函数关系式为_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,x的取值范围是

  6、汽车开始行驶时油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q升与行驶时间t小时的关系是_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,t的取值范围是

  【评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  14.1.3函数的图象(一)

  【学习目标】

  会观察函数图象,从函数图像中获取信息,解决问题。

  【学习重难点】

  初步掌握画函数图象的方法;通过观察、分析函数图象获取信息.

  【前置自学】

  1、如图一,是北京春季某一天的气温T随时间t变化的图象,看图回答:

  (1)气温最高是_______℃,在_______时,气温最低是_______℃,在______时;

  (2)12时的气温是_______℃,20时的气温是_______℃;

  (3)气温为-2℃的是在_______时;

  (4)气温不断下降的时间是在______________;

  (5)气温持续不变的时间是在______________。

  2、小明的 爷爷吃过晚饭后,出门散步,再报亭看了一会儿报纸

  才回家,小明绘制了爷爷离家的路程s(米)与外出的时间t(分)之间的关系图

  (图二)

  (1)报亭离爷爷家________米;

  (2)爷爷在报亭看了________分钟报纸;

  【合作探究】

  图三反映的过程是:小明从家去菜地浇水,又去玉米地锄地,然后回家,。其中x表

  示时间,y表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上。

  根据图像回答下列问题:

  (1)菜地离小明家多远?小明家到菜地用了多少时间?

  (2)小明给菜地浇水用了多少时间?

  (3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?

  (4)小明给玉米地除草用了多少时间?

  (5)玉米地离小明家多远?小明从玉米地回家的平均速度是多少?

  【达标拓展】

  1、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).

  2、小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里.下面图形中表示小红爷爷离家的时间与外出距离之间的关系是( )

  3、有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按先共同的速度将水排尽,则游泳池的存水量为V(立方米)随时间t(小时)变化的大致图像是( )

  4、图中的折线表示一骑车人离家的距离y与时间x的关系。骑车人9:00离家,15:00回家,请你根据这个折线图回答下列问题:

  (1)这个人什么时间离家最远?这时他离家多远?

  (2)何时他开始第一次休息?休息多长时间?这时

  他离家多远?

  (3)11:00~12:30他骑了多少千米?

  (4)他再9:00~10:30和10:30~12~30的平均

  速度各是多少?

  (5)他返家时的平均速度是多少?

  (6)14:00时他离家多远?何时他距家10千米?

  5、王教授和孙子小强经常一起进行早锻炼,主要活动是爬.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开脚的距离(米)与爬所用时间(分)的关系(从小强开始爬时计时),看图回答下列问题:

  (1)小强让爷爷先上多少米?

  (2)顶高多少米?谁先爬上顶?

  (3)小强用多少时间追上爷爷?

  (4)谁的速度大,大多少?

  【评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.1.3 函数图像(二)

  【学习目标】

  1、会用描点法画出函数的图像。

  2、画函数图像的步骤:(1)列表;(2)描点;(3)连线。

  【学习重难点】

  会用描点法画函数的图象

  【前置自学】

  例1 画出函数y= x2的图象. 分析:要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些 自变量的值,并求出对应的函数值.(x的取值一定要在它的取值范围内)

  解:(1)取x的自变量一些值,例如x=-3,-2,-1,0,1,2,3,。。。。,并且计算出对应的函数值,为方便表达,我们列表如下:

  x。。。-3-2-1 0 123。。。

  y。。。 。。。

  由此,我们得到一系列的有序实数对:。。。,( ),( ),( ),

  (2)在直角坐标系中描出这些有序实数对的对应点

  (3)描完点之后,用光滑的曲线依次把这些点连起,便可得到这个函数的图象。

  这里画函数图象的方法我们称为__________,步骤为:__________________。

  【展示交流】

  1、在所给的直角坐标系中画出函数y= x的图象(先填写下表,再描点、连线).

  x-3-2-10123

  2、画出下列函数的图像

  【达标拓展】

  1、矩形的周长是8cm,设一边长为x cm,另一边长为y cm.

  (1)求y关于x的函数关系式,并写出自变量x的取值范围;

  (2)在给出的坐标系中,作出函数图像。

  2、王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式y= 击球,球正好进洞.其中,y(m)是球的飞行高度,x(m)是球飞出的水平距离.

  (1)试画出高尔夫球飞行的路线;

  (2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少?

  解:(1) 列表如下:

  从图象上看,高尔夫球的最大飞行高度是______m,球的起点与洞之间的距离是_____m。

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.1.3 函数图像(三)

  【学习目标】

  1、会根据题目中题意或图表写出函数解析式;

  2、根据函数解析式解决问题。

  【学习重难点】

  根据函数解析式解决问题,学会确定自变量的取值范围

  【前置自学】

  例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减小,平均耗油量为0.1 L / km。

  (1)写出表示y与x的函数关系式,这样的式子叫做函数解析式。

  (2)指出自变量x的取值范围;

  (3)汽车行驶200km时,邮箱中还有多少汽油?

  练习:拖拉机开始工作时,邮箱中有油30L,每小时耗油5L。

  (1)写出邮箱中的余油量Q(L)与工作时间t(h)之间的函数关系式;

  (2)求出自变量t的取值范围;

  (3)画出函数图象;

  (4)根据图像回答拖拉机工作2小时后,邮箱余油是多少?若余油10L,拖拉机工作了几小时?

  【展示交流】

  例2:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。

  t / 时012345

  y / 米1010.510.1010.1510.20xx.25

  (1)由记录表推出这5小时中水位高度y(单位:米)岁时间t(单位:时)变化的函数解析式,并画出函数图像;

  (2)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米?

  练习:有一根弹簧最多可挂10kg重的物体,测得该弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系:

  x(kg)012345

  y(cm)1212.51313.51414.5

  (1)写出y与x的函数关系式,并求出自变量的取值范围;

  (2)画出函数图像;

  (3)根据函数图像回答,当弹簧长为16.5cm时,所挂的物体质量是多少kg?当所挂物体质量为8kg的时候,弹簧的长为多少cm?

  【达标拓展】

  1、某种活期储蓄的月利率是0.06%,存入100元本金,则本息和y(元)随所存月数x变化的函数解析式为______________,当存期为4个月的时候,本息和为________元;

  2、正方向边长为3,若边长增加x则面积增加y,则y随x变化的函数解析式为____________,若面积增加了16 ,则变成增加了___________;

  3、甲车速度为20米/秒,乙车速度为25米/秒,现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式为________________,自变量x的取值范围是______________;

  4、某学校组织学生到炬力千米的博物馆无参观,小红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去博物馆,车租车的收费标准如下:

  里程收费

  3千米及3千米以下7.00

  3千米以上,每增加1千米2.00

  (1)请写出出租车行驶的里程数x(千米)与费用y(元)之间的函数关系式;

  (2)小红同学身上仅有14元钱,乘出租车到博物馆的车费够不够,请说明理由。

  5、声音在空气中传播速度和气温间有如下关系:

  气温(℃)05101520

  声速(m/s)331334337340343

  (1)若用t表示气温,V表示声速,请写出V随t变化的函数解析式;

  (2)当声速为361m/s的时候,气温是多少?

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.2.1 正比例函数

  【学习目标】

  1、理解正比例函数的概念

  2、会画正比例函数的图像,理解正比例函数的性质。

  【学习重难点】

  1、理解正比例函数意义及解析式的特点

  2、掌握正比例函数图象的性质特点。

  【前置自学】

  按下列要求写出解析式

  (1)一本笔记本的单价为2元,现购买x本与付费y元的关系式为_________________;

  (2)若正方形的周长为P,边长为a,那么边长a与周长p之间的关系式为______________;

  (3)一辆汽车的速度为60 km / h ,则行使路程s与行使时间t之间的关系式为_________;

  (4)圆的半径为r,则圆的周长c与半径r之间的关系式为______________。

  一般地,形如 (k是常数,k≠0)的函数,叫做 ,其中k叫做比例系数。

  ※练习:1、下列函数钟,那些是正比例函数?______________

  (1) (2) (3) (4) (5)

  (6) (7) (8)

  2、关于x的函数 是正比例函数,则m__________

  【展示交流】

  画出下列正比例函数

  比较上面两个图像,填写你发现的规律:

  (1)两个图像都是经过原点的 __________,

  (2)函数 的图像经过第_____象限,从左到右_______,即y随x的增大而_______;

  (3)函数 的图像经过第_____象限,从左到右______,即y随x的增大而_______;

  【合作探究】

  总结:正比例函数的解析式为__________________

  相同点

  图像所在象限

  图像大致形状

  增减性

  【达标拓展】

  1、关于函数 ,下列结论中,正确的是( )

  A、函数图像经过点(1,3) B、函数图像经过二、四象限

  C、y随x的增大而增大 D、不论x为何值,总有y>0

  2、已知正比例函数 的图像过第二、四象限,则( )

  A、y随x的增大而增大 B、y随x的增大而减小

  C、当 时,y随x的增大而增大;当 时,y随x的增大而减少;

  D、不论x如何变化,y不变。

  3、当 时,函数 的图像在第( )象限。

  A、一、三 B、二、四 C、二 D、三

  4、函数 的图像经过点P(-1,3)则k的值为( )

  A、3 B、—3 C、 D、

  5、若A(1,m)在函数 的图像上,则m=________,则点A关于y轴对称点坐标是___________;

  6、若B(m,6)在函数 的图像上,则m=________,则点A关于x轴对称点坐标是___________;

  7、y与x成正比例,当x=3时, ,则y关于x的函数关系式是____________

  8、函数 的图像在第_______象限,经过点(0,____)与点(1,____),y随x的增大而_________

  9、一个函数的图像是经过原点的直线,并且这条直线经过点(1,-3),求这个函数解析式。

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.2.2 一次函数(一)

  【学习目标】

  1.理解一次函数的特点及意义

  2.知道一次函数与正比例的函数关系

  【学习重难点】

  1.一次函数与正比例函数的关系

  2.一次函数的结构特点。

  【前置自学】

  根据题意写出下列函数的解析式

  (1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;_______________

  (2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减常数105,所得的差是G的值;_______________

  (3)某城市的市内电话的月收费为y(单位:元)包括:月租22元,拨打电话x分的计时费(按0.1元/分收取);_______________

  (4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化。_______________

  一般地,形如 (k,b是常数, )的函数,叫做一次函数,特别地,当 时, 即 ,即正比例函数是一种特殊的一次函数。

  【展示交流】

  1、下列函数中,是一次函数的有_____________,是正比例函数的有______________

  (1) (2) (3) (4)

  (5) (6) (7)

  2、若函数 是正比例函数,则b = _________

  3、在一次函数 中,k =_______,b =________

  4、若函数 是一次函数,则m__________

  5、在一次函数 中,当 时, ______;当 _____时, 。

  6、下列说法正确的是( )

  A、 是一次函数 B、一次函数是正比例函数

  C、正比例函数是一次函数 D、不是正比例函数就一定不是一次函数

  7、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是________________,它是__________函数。

  8、今年植树节,同学们中的树苗高约1.80米。据介绍,这种树苗在10年内平均每年长高0.35米,则树高y与年数x之间的函数关系式是_____________,它是_______函数,同学们在3年之后毕业,则这些树高________米。

  9、随着海拔高度的升高,大气压下降,空气的含氧量也随之下降,已知含氧量y与大气压强x成正比例,当x=36时,y=108,请写出y与x的函数解析式___________,这个函数图像在第________象限,同时经过点(0,_____)与点(1,_____)

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.2.2 一次函数(二)

  【学习目标】

  1、懂得画一次函数的图像,清楚知道一次函数之间的关系

  2、理解一次函数图像的性质,了解 中的k,b对函数图像的影响

  【学习重难点】

  1.一次函数的图象的画法。

  2.一次函数的图象特征与解析式联系。

  【前置自学】

  例1:在同一个直角坐标系中画出函数 , , 的图像

  -2-1012

  y=2x

  y=2x+3

  y=2x-3

  【展示交流】

  ※ 观察这三个图像,这三个函数图像形状都是_________,并且倾斜度_______。函数 的图像经过原点,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到;同样的,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到。

  ※ 猜想:一次函数 的图像是一条________,当 时,它是由 向_____平移_____个单位长度得到;当 时,它是由 向_____平移_____个单位长度得到。

  ※ 练习:

  1、在同一个直角坐标系中,把直线 向_______平移_____个单位就得到 的图像;若向_______平移_____个单位就得到 的图像。

  2、(1)将直线 向下平移2个单位,可得直线________;

  (2)将直线 向_____平移______个单位可得直线 。

  例2 :分别画出下列函数的图像

  (1) (2) (3) (4)

  分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x轴,y轴的交点。

  (1) (2) (3) (4)

  x0

  y0

  ※ 观察上面四个图像,(1) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(4) 经过_________象限;y随x的增大而_______,函数的图像从左到右________。

  【合作探究】

  1、由此可以得到直线 中,k ,b的取值决定直线的位置:

  (1) 直线经过___________象限;

  (2) 直线经过___________象限;

  (3) 直线经过___________象限;

  (4) 直线经过___________象限;

  2、一次函数的性质:

  (1)当 时,y随x的增大而_______,这时函数的图像从左到右_______;

  (2)当 时,y随x的增大而_______,这时函数的图像从左到右_______;

  【达标拓展】

  1、一次函数 的图像不经过( )

  A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限

  2、已知直线 不经过第三象限,也不经过原点,则下列结论正确的是( )

  A、 B、 C、 D、

  3、下列函数中,y随x的增大而增大的是( )

  A、 B、 C、 D、

  4、对于一次函数 ,函数值y随x的增大而减小,则k的取值范围是( )

  A、 B、 C、 D、

  5、一次函数 的图像一定经过( )

  A、(3,5) B、(-2,3) C、(2,7) D、(4、10)

  6、已知正比例函数 的函数值y随x的增大而增大,则一次函数 的图像大致是( )

  7、一次函数 的图像如图所示,则k_______,

  b_______,y随x的增大而_________

  8、一次函数 的图像经过___________象限,

  y随x的增大而_________ (第6题)

  9、已知点(-1,a)、(2,b)在直线 上,则a,b的大小关系是__________

  10、直线 与x轴交点坐标为__________;与y轴交点坐标_________;图像经过__________象限,y随x的增大而____________,图像与坐标轴所围成的三角形的面积是___________

  11、已知一次函数 的图像经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条的函数关系式_____________

  12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条的函数关系式:_______________

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.2.2 一次函数(三)

  【学习目标】

  学会运用待定系数法和数形结合思想求一次函数解析式

  【前置自学】

  例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。

  分析:求一次函数 的解析式,关键是求出k,b的值,从已知条可以列出关于k,b的二元一次方程组,并求出k,b。

  解: ∵一次函数 经过点(3,5)与(2,3)

  解得

  ∴一次函数的解析式为_______________

  像例1这样先设出函数解析式,再根据条确定解析式中未知的系数,从而具体

  写出这个式子的方法,叫做待定系数法。

  【展示交流】

  1、已知一次函数 ,当x = 5时,y = 4,

  (1)求这个一次函数。 (2)求当 时,函数y的值。

  2、已知直线 经过点(9,0)和点(24,20),求这条直线的函数解析式。

  3、已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现

  已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2

  厘米.求这个一次函数的关系式.

  【合作探究】

  例2:已知一次函数的图象如图所示,求出它的函数关系式

  练习:已知一次函数的图象如图所示,求出它的函数关系式

  例3:地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系。

  深度(千米)。。。246。。。

  温度(℃)。。。90160300。。。

  (1)根据上表,求t(℃)与h(千米)之间的函数关系式;

  (2)求当岩层温度达到1700℃时,岩层所处的深度为多少千米?

  练习:为了学生的身体健康,学校桌、凳的高度都是按一定的`关系科学设计的.小明对学校所添置的一批桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套桌、凳上相对应的四档高度,得到如下数据:

  (1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);

  (2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.

  例4:某自水公司为了鼓励市民节约用水,采取分段收费标准。居民每月应交水费y(元)是用水量x(吨)的函数,其图象如图所示:

  (1)分别写出 和 时,y与x的函数解析式;

  (2)若某用户居民该月用水3.5吨,问应交水费多少元?

  若该月交水费9元,则用水多少吨?

  【达标拓展】

  1、A(1,4),B(2,m),C(6,-1)在同一条直线上,求m的值。

  2、已知一次函数的图像经过点A(2,2)和点B(-2,-4)

  (1)求AB的函数解析式;

  (2)求图像与x轴、y轴的交点坐标C、D,并求出直线AB与坐标轴所围成的面积;

  (3)如果点(a, )和N(-4,b)在直线AB上,求a,b的值。

  3、某市推出电脑上网包月制,每月收费y(元)与上网时间x(小时)的函数关系如图

  所示:

  (1)当 时,求y与x之间的函数关系式;

  (2)若小李4月份上网20小时,他应付多少元

  的上网费用?

  (3)若小李5月份上网费用为75元,则他在该

  月分的上网时间是多少?

  4、某运输公司规定每名旅客行李托运费与所托运行李质量之间的关系式如图所示,请根据图像回答下列问题:

  (1)由图像可知,行李质量只要不超过______kg,就可以免费携带。如果超过了规定的质

  量,则每超过10kg,要付费_______元。

  (2)若旅客携带的行李质量为x(kg),所付的行李费是y(元),请写出y(元)随x(kg)

  变化的关系式。

  (3)若王先生携带行李50kg,他共要付行李费多少元?

  5、大拇指与小拇指尽量张开时,两指尖的距离称为指距。某研究表明,一般人的身高h时指距d的一次函数,下表中是测得的指距与身高的一组数据:

  指距d(cm)20212223

  身高h(cm)160169178187

  (1)求出h与d之间的函数关系式

  (2)某人身高为196cm,则一般情况下他的指距应为多少?

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.3.1 一次函数与一元一次方程

  【学习目标】

  1、进一步认识和理解一次函数,同时进一步巩固一元一次方程的解法。

  2、弄通一次函数与x轴的交点与一元一次方程的解的关系。

  【前置学习】

  1、解方程2x+4=0

  2、自变量x为何值时函数y=2x+4的值为0?

  3、以上方程2x+4=0与函数y=2x+4有什么关系?

  4、是不是任何一个一元一次方程都可以转化为ax+b=0(a、b是常数,a≠0)?

  5、当某个一次函数y=ax+b的值为0时,求相应的自变量x的值。从图像上看,相当于确定直线y=ax+b与x轴交点的横坐标的值。

  6、仔细理解例1中的解法1与解法2有什么不同。

  【展示交流】

  1、解方程ax+b=0(a、b为常数,a≠0)

  2、自变量x为何值时,一次函数y=ax+b的值为0,这句话与解方程ax+b=0(a、b为常数)到底有什么关系?

  【合作探究】

  一个物体现在的速度是3m/秒,其速度每秒增加2m/秒,再过几秒它的速度为11m/秒?

  1)、此问题用方程解如何去解?

  2)、画出y=2x-8的函数图象

  如果速度y是时间x的函数,则上述问题与y=2x+3有什么关系?如何去解上述问题?

  【达标拓展】

  1)、当自变量x的取值满足什么条时,函数y=3x+8的值满足于下列条:

  ①、y=0 ②、y=-7

  2)、利用函数图象解5x-3=x+2

  整体感知

  如何理解一次函数与x轴交点的横坐标与解方程的关系?

  【堂检测】

  A、基础知识巩固

  1、当自变量x的取值满足什么条时,函数y=5x+7的值满足下列条

  (1)、y=0 (2)、y=20

  B、能力提升

  当自变量x取何值时,函数y= +1与y=5x+17的值相等?

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  14.3.2 一次函数与一元一次不等式

  【学习目标】、

  1、会用一次函数的图像解一元一次不等式,理解一次函数与一元一次不等式的关系,

  2、经历从“数”与“形”两个角度解决问题的过程,体会数形结合的思想。

  3、利用一次函数的图像确定一元一次不等式的解集

  【前置学习】

  1、什么是一元一次不等式?它的解集是什么?

  2、看下面两个问题有什么关系

  (1)、解不等式5x+6>3x+10

  (2)、自变量x为何值时,函数y=2x-4的值大于0?

  3、由上面两个问题的关系,能进一步得到“解不等式ax+b>0与求自变量x在什么范围内一次函数y=ax+b的值大于0”有什么关系?

  4、一元一次不等式与一次函数有什么联系?

  任何一元一次不等式都可以转化为____________或_____________(a、b为常数,a≠0) 的形式,所以解一元一次不等式可以看作是:当一次函数值大(小)于0时,求________相应的______________

  【展示交流】

  用画函数图像的方法解不等式5x+4<2x+10

  解法1:原不等式化为3x-6<0,画出直线y=3x-6,可以看出,当x<2时_______________________,即y=3x-6<0,所以不等式的解集为x<2.

  [解析]

  解法2:将原不等式的两边分别看作两个一次函数,分别为:y=5x+4与直线y=2x+10,在同一坐标系内画出图像

  如图所示,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10的下方,所以不等式的解集为x<2.

  【合作探究】

  用画图像法解不等式,首先要把不等式转化为函数的形式,根据图像判断不等式的解集,两种解法都把不等式转化为比较___________________的高低

  如图:直线y=kx+b经过点A(-3,-2),B(2,4),根据图像解答下列问题:

  (1)、求k,b的值

  (2)、指明不等式 >0的解集

  (3)、求不等式 >4的解

  (4)、解不等式6x+8<-10

  1、从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的

  ___________________的取值范围。

  2、从函数图像的角度看,就是确定直线y=kx+b在x轴上方(或下方)部分所

  3、理解y>0,y=0,y<0的几何意义:

  一次函数y=kx+b,图像在x轴上方时,y____0,图像在x轴上时,y____0,图像在轴下方时,y____0.

  【达标拓展】

  1、已知一次函数y=kx+b的图像如图,当x<时,y的取值范围是( )

  A、y>0 B、y<0 C、-2<y<0 D、y<-2

  2、一次函数的图像如图,则它的解析式是_____________________.

  当x=______时,y=0 当x_______时,y>0 当y_______时,x<0

  3、利用函数图象解出x

  (1)、5x-1=2x+5 (2)、6x-4<3x+2

  4、利用函数图象解不等式

  (1)、5x-1>2x+5 (2)、x-4<3x+1

  5、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬

  1.5元,超过100个,超过部分每个产品付酬增加0.3元,超过200 个,超过部分除

  按上述规定外,每个产品再增加0.4元,求一个工人:

  (1)完成100个以内所得报酬 y(元)与产品数x(个)之间的函数关系式。

  (2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函

  数关系式。

  (3)完成200个以上所得报酬y(元)与产品个数x(个)之间的函数关系式

  【教学评价】

  小组内合作任务完成情况:__________(组长评价:好、中、差)

  达标练习完成情况:__________(教师评价:好、中、差)

  【教学反思】

  中考数学二次函数2复习

  节第三题

  型复习教法讲练结合

  教学目标(知识、能力、教育)1.理解二次函数与一元二次方程之间的关系;

  2.会结合方程根的性质、一元二次方程根的判别式,判定抛物线与 轴的交点情况;

  3.会利用韦达定理解决有关二次函数的问题。

  4.会利用二次函数的图象及性质解决有关几何问题。

  教学重点二次函数性质的综合运用

  教学难点二次函数性质的综合运用

  教学媒体学案

  教学过程

  一:【前预习】

  (一):【知识梳理】

  1.二次函数与一元二次方程的关系:

  (1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0

  时的情况.

  (2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元 二次方程ax2+bx+c=0的根.

  (3)当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二 次方程y=ax2+bx+c有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程y=ax2+bx+c没有实数根

  2.二次函数的应用:

  (1)二次函数常用解决 最优化问题,这类问题实际上就是求函数的最大( 小)值;

  (2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.

  3.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.

  (二):【前练习】

  1. 直线y=3x—3与抛物线y=x2 -x+1的交点的个数是( )

  A.0 B.1 C.2 D.不能确定

  2. 函数 的图象如图所示,那么关于x的方程 的根的情况是( )

  A.有两个不相等的实数根; B.有两个异号实数根

  C.有两个相等实数根; D.无实数根

  3. 不论m为何实数,抛物线y=x2-mx+m-2( )

  A.在x轴上方; B.与x轴只有一个交点

  C.与x轴有两个交点; D.在x轴下方

  4. 已知二次函数y =x2-x—6

  (1)求二次函数图象与坐标轴的交点坐标及顶点坐标;

  (2)画出函数图象;

  (3)观察图象,指出方程x2-x—6=0的解;

  (4)求二次函数图象与坐标轴交点所构成的三角形的面积.

  二:【经典考题剖析】

  1. 已知二次函数y=x2-6x+8,求:

  (1)抛物线与x轴J轴相交的交点坐标;

  (2)抛物线的顶点坐标;

  (3)画出此 抛物线图象,利用图象回答下列问题:

  ①方程x2 -6x+8=0的解是什么?

  ②x取什么值时,函数值大于0?

  ③x取什么值时,函数值小于0?

  解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.所以与x轴交点为(2,0)和(4,0)当x1=0时,y=8.所以抛物线与y轴交点为(0,8);

  (2)∵ ;∴抛物线的顶点坐标为(3,-1)

  (3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0.

  2. 已知抛物线y=x2-2x-8,

  (1)求证:该抛物线与x轴一定有两个交点;

  (2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P ,求△ABP的面积.

  解:(1)证明:因为对于方程x2-2x-8=0,其判别式△=(-2)2-4×(-8)-36>0,所以方程x2-2x -8=0有两个实根,抛物线y= x2-2x-8与x轴一定有两个交点;

  (2)因为方程x2-2x-8=0 有两个根为x1=2,x2=4,所以AB= x1-x2=6.又抛物线顶点P的纵坐标yP = =-9,所以SΔABP=12 AByP=27

  3.如图所示,直线y=-2x+2与 轴、 轴分别交于点A、B,以

  线段AB为直角边在第一象限内 作等腰直角△ABC,∠BAC=90o,

  过C作CD⊥ 轴,垂足为D

  (1)求点A、B的坐标和AD的长

  (2)求过B 、A、D三点的抛物线的解析式

  4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB

  边向点B以1cm/s的速度移动,同时点Q从点B出发,沿 BC边向

  点C以2cm/s的速度移动,回答下列问题:

  (1)设运动后开始第t(单位:s)时,五边形APQCD的面积为S

  (单位:cm2),写 出S与t的函数关系式,并指出自变量t的取值范围

  (2)t为何值时S最小? 求出S的最小值

  5. 如图,直线 与 轴、 轴分别交于A、B两点,点P是线段AB的中点,抛物线 经过点A、P、O(原点)。

  (1)求过A、P、O的抛物线解析式;

  (2)在(1)中 所得到的抛物线上,是否存在一点Q,使

  ∠QAO=450,如果存在,求出点Q的坐标;如果不存在,请说明理由。

  四:【后小结】

  布置作业地纲

  教后记

  九年级数学上册全册教案

  题21.1二次根式(概念及基本性质)型新知3时

  目标1.了解二次根式的概念及基本性质.

  2.经历观察、比较、总结二次根式的基本性质的过程,发展学生概括、归纳能力.

  3.通过对二次根式概念和基本性质的探究,提高数学探究能力和归纳表达能力.

  4.学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的乐趣,并提高应用的意识.

  重点二次根式的概念和基本性质.

  教学难点二次根式基本性质的灵活应用.

  教具准备

  教学过程主要教学过程个人修改

  【活动1】

  学生根据所学知识填写本第2页“思考”栏目,教师提问:

  ⑴所填的结果有什么特点?

  ⑵平方根的性质是什么?

  ⑶如果把上面所填的式子叫做二次根式,那么你能用数学符号表示二次根式吗?

  (学生可能碰到的困难:①是否会想到用字母表示数;②是否能概括出 ≥0这一条.)

  (备用问题)议一议:

  1.-1有算术平方根吗?

  2.0的算术平方根是多少?

  3.当a<0, 有意义吗?

  例1下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).

  例2 当x是多少时, 在实数范围内有意义?

  【巩固练习】

  1.本第3页练习1、2、3

  2.本第3页“思考”栏目

  【拓展应用】

  例3 当x是多少时, + 在实数范围内有意义?

  (答案:当x≥- 且x≠-1时, + 在实数范围内有意义.)

  例4 (1)已知y= + +5,求 的值.(答案: )

  (2)若 + =0,求a20xx+b20xx的值.(答案:0)

  【归纳小结】 本节要掌握:

  1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

  2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

  【作业设计一】

  一、选择题 1.下列式子中,是二次根式的是( )

  A.- B. C. D.x

  2.下列式子中,不是二次根式的是( )

  A. B. C. D.

  3.已知一个正方形的面积是5,那么它的边长是( )

  A.5 B. C. D.以上皆不对

  二、填空题

  1.形如________的式子叫做二次根式.

  2.面积为a的正方形的边长为________.

  3.负数________平方根.

  三、综合提高题

  1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

  2.当x是多少时, +x2在实数范围内有意义?

  3.若 + 有意义,则 =_______.

  4.使式子 有意义的未知数x有( )个.

  A.0 B.1 C.2 D.无数

  5.已知a、b为实数,且 +2 =b+4,求a、b的值.

  【活动2】

  问题:比较 与0的大小.

  结论: (a≥0)是一个非负数.即 ≥0. 具有双重非负性.

  【做一做】根据算术平方根的意义填空:

  ( )2=_______;( )2=_______;( )2=______;( )2=_______;

  ( )2=______;( )2=_______;( )2=_______.

  结论: ( )2=a(a≥0)

  例1 计算

  1.( )2 2.(3 )2 3.( )2 4.( )2

  【巩固练习】

  计算下列各式的值:

  ( )2 ( )2 ( )2 ( )2 (4 )2

  【拓展应用】例2 计算

  1.( )2(x≥0) 2.( )2 3.( )2

  4.( )2

  例3在实数范围内分解下列因式:

  (1)x2-3 (2)x4-4 (3) 2x2-3

  【归纳小结】 本节应掌握:

  1. (a≥0)是一个非负数;

  2.( )2=a(a≥0);反之:a=( )2(a≥0).

  【作业设计二】

  一、选择题

  1.下列各式中 、 、 、 、 、 ,二次根式的个数是( ).

  A.4 B.3 C.2 D.1

  2.数a没有算术平方根,则a的取值范围是( ).

  A.a>0 B.a≥0 C.a<0 D.a=0

  二、填空题

  1.(- )2=________.

  2.已知 有意义,那么是一个_______数.

  三、综合提高题

  1.计算

  (1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

  (5)

  2.把下列非负数写成一个数的平方的形式:

  (1)5 (2)3.4 (3) (4)x(x≥0)

  3.已知 + =0,求xy的值.

  4.在实数范围内分解下列因式:

  (1)x2-2 (2)x4-9 3x2-5

  【活动3】问题:填空

  =_______; =_______; =______;

  =________; =________; =_______.

  (老师点评):根据算术平方根的意义,我们可以得到:

  =2; =0.01; = ; = ; =0; = .

  因此,一般地: =a(a≥0)

  例1 化简

  (1) (2) (3) (4)

  解:(1) = =3 (2) = =4

  (3) = =5 (4) = =3

  【巩固练习】

  教材P5练习2.

  【应用拓展】

  例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题.

  (1)若 =a,则a可以是什么数?

  (2)若 =-a,则a可以是什么数?

  (3) >a,则a可以是什么数?

  分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时, = ,那么-a≥0.

  (1)根据结论求条;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.

  解:(1)因为 =a,所以a≥0;新 标 第 一 网

  (2)因为 =-a,所以a≤0;

  (3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0

  例3当x>2,化简 - .

  【归纳小结】本节应掌握:

  =a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展.

  【作业设计三】

  一、选择题

  1. 的值是( ).

  A.0 B. C.4 D.以上都不对

  2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( ).

  A. = ≥- B. > >-

  C. < <- -=""> =

  当k<0,b<0时,一次函数图像经过______________象限.

  当k>0,正比例函数图像经过______________象限.

  当k<0,正比例函数图像经过______________象限.

  补充例题:

  例1.(1)一次函数y=kx+b的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.

  (2)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,且mn≠0)的图象是()

  例2.(1)若k>0,b>0,则直线y=kx+b的图象经过第___________象限.

  (2)若k<0,b>0,则直线y=kx+b的图象经过第___________象限.

  (3)已知函数y=kx+b的图象不经过第二象限,则k______,b______.

  例3.已知一次函数y=(m+5)x+(2-n).①m为何值时,y随x的增大而减少?②m、n为何值时,函数图像与y轴的交点在x轴上方?③m、n为何值时,函数图像过原点?④m、n为何值时,函数图像经过二、三、四象限?

  例4.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象与y轴的交点在x轴下方,求m的取值范围.

  课后续助:

  一、填空题:

  1.已知一次函数y=kx+5的图象经过点(-1,2),则k=_________.

  2.一次函数y=kx+b的图象如图所示,则k=_______,b=________.

  3.若k<0,b<0,则一次函数y=kx+b的图象经过第______________象限.

  4.已知直线l1:y=ax+b经过第一、二、四象限,那么直线l2:y=bx+a所经过的象限是.

  5.(1)一次函数y=x-1的图象与x轴交点坐标为__________,与y轴的交点坐标为__________,y随x的增大而____________.

  (2)一次函数y=-5x+4的图象经过___________象限,y随x的增大而________.

  (3)一次函数y=kx+1的图象过点A(2,3),则k=_______,该函数图象经过点B(-1,____)和C(0,_____)

  (4)已知函数y=mx+(m+2),当m________时,的图象过原点;当m________时,函数y值x随的增大而增大.

  (5)写出一个y随x的增大而减少的一次函数_______.

  二、选择题:

  1.直线y=x+1不经过的象限是( )

  A.第一象限B.第二象限C.第三象限D.第四象限

  2.下列函数中,y随x的增大而增大的函数是()

  A.y=-3xB.y=-2x+1C.y=x-3D.y=-x-2

  3.若函数y=(m-1)x+1是一次函数,且y随自变量x的增大而减小,那么m的取值为()A.m>1B.m≥1C.m<1D.m=1

  4.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则它的大致图象是()

  ABCD

  三、解答题:

  1.已知一次函数y=(p+8)x+(6-q).

  ①p、q为何值时,y随x的增大而增大?

  ②p、q为何值时,函数与y轴交点在x轴上方?

  ③p、q为何值时,图象过原点?

  2.若一次函数y=(2k-3)x+2-k的图象与y轴的交点在x轴上方,且y随x的增大而增大,求k的取值范围.

  3.已知一次函数y=ax+1+a2的图象与y轴的交点的纵坐标为5,且图象经过第一、二、三象限,求此函数的解析式.

  4.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.

  (1)求m的值;

  (2)当x取何值时,0<y<4?

一次函数教案13

  教学目标:

  认知目标:1.了解一次函数与一元一次不等式的关系,会根据一次函数的图象解决一元一次不等式的求解问题.

  2.学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的.

  能力情感目标:经历不等式与函数关系问题的探究过程,学习用联系的观点看待数学问题的辨证.

  教学重点:一次函数与一元一次不等式的关系的理解.

  教学难点:利用一次函数的图象确定一元一次不等式的解集.

  教学过程:

  一、探究新知:

  通过上节课的学习,我们已经知道“解一元一次方程ax+b=0”与“求自变量为何值时,一次函数y=ax+b的`值为0”是同一个问题.现在我们来看看:

  (1)以下两个问题是否为同一个问题?

  ①解不等式:2x-4>0

  ②当x为何值时,函数y=2x-4的值大于0?

  (2)你如何利用函数的图象来说明②?

  (3)“解不等式2x-4<0”可以与怎样的一次函数问题是同一的?怎样在图象上加以说明?

  归纳:解一元一次不等式ax+b>0(或ax+b<0)可以看作:当一次函数y=ax+b的值大(小)于0时,求自变量响应的取值范围.

  二、应用新知:

  1.练习:P42练习1(3)(4)

  2.例2 用画函数图象的方法解不等式5x+4>2x+10.

  思考:我们应该画出什么函数的图象来解?

  思路1:将不等式化为3x-6>0,然后画出函数y=3x-6的图象.

  思路2:将不等式5x+4>2x+10的两边分别看作两个一次函数,画出直线y=5x+4和直线y=2x+10,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时

  5x+4>2x+10.

  三、巩固练习

  1.P42练习2(2)

  2.P45习题11.3第3、4题

  四、

  五、布置作业

一次函数教案14

  一、读一读

  学习目标:

  1、掌握“三角形内角和定理”的证明及其简单应用;

  2、体会思维实验和符号化的理性作用

  二、试一试

  自学指导:

  1、回忆三角形内角和的探索方式,想一想,根据前面给出的公里 和定理,你能进行论证么?

  2、已知:如右图所示,△ABC

  求证:∠A+∠B+∠C=180°

  思考:延长BC到D,过点C作射线CE∥BA,这样就相

  当于把∠A移到了 的位置,把∠B移到 的'位置。

  注意:这里的CD,CE称为辅助线,辅助线通常画成虚线

  证明:作BC的延长线CD,过点C作射线CE∥BA,则:

  3、你还有其它方式么(可参考课本239页“议一议”小明的想法;241页联系拓广4)?方法越多越好!

  三、练一练

  1、直角三角形的两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。

  2、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D和点E分别在AB和AC上,且DE∥BC

  求证:∠ADE=50°

  3、如图,在△ABC中,DE∥BC,∠DBE=30°, ∠EBC=25°,求∠BDE的大小。

  4、证明:四边形的内角和等于360°

一次函数教案15

  ●教学目标

  (一)教学知识点

  1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.

  2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.

  (二)能力训练要求

  能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.

  (三)情感与价值观要求

  能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用.

  ●教学重点

  根据所给信息确定一次函数的表达式.

  ●教学难点

  用一次函数的知识解决有关现实问题.

  ●教学方法

  启发引导法.

  ●教具准备

  小黑板、三角板

  ●教学过程

  Ⅰ.导入新课

  [师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.

  Ⅱ.讲授新课

  一、试一试(阅读课文P167页)想想下面的问题,数学教案-确定一次函数的表达式。

  某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。

  (1)写出v与t之间的关系式;

  (2)下滑3秒时物体的速度是多少?

  分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析

  式求出待定系数即可.

  [师]请大家先思考解题的思路,然后和同伴进行交流.

  [生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.

  解:由题意可知v是t的正比例函数.

  设v=kt

  ∵(2,5)在函数图象上

  ∴2k=5

  ∴k=

  ∴v与t的关系式为

  v= t

  (2)求下滑3秒时物体的速度,就是求当t等于3时的v的.值.

  解:当t=3时

  v=×3= =7.5(米/秒)

  二、想一想

  [师]请大家从这个题的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式.大家互相讨论之后再表述出来.

  [生]第一步应根据函数的图象,确定这个函数是正比例函数或是一次函数;

  第二步设函数的表达式;

  第三步根据表达式列等式,若是正比例函数,则找一个点的坐标即可;若是一次函数,则需要找两个点的坐标,把这些点的坐标分别代入所设的解析式中,组成关于k,b的一个或两个方程.

  第四步解出k,b值.

  第五步把k,b的值代回到表达式中即可.

  [师]由此可知,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?

  [生]确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件.

  三、阅读课文P167页例一,尝试分析解答下面例题

  [例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的

  一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.

  [师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.

  [生]没有画图象.

  [师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?

  [生]因为题中已告诉是一次函数.

  [师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.

  [生]解:设y=kx+b,根据题意,得

  15=k+b, ①

  16=3k+b. ②

  由①得b=15-k

  由②得b=16-3k

  ∴15-k=16-3k

  即k=0.5

  把k=0.5代入①,得k=14.5

  所以在弹性限度内.

  y=0.5x+14.5

  当x=4时

  y=0.5×4+14.5=16.5(厘米)

  即物体的质量为4千克时,弹簧长度为16.5厘米.

  [师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.

  [生]它们的相同步骤是第二步到第四步.

  求函数表达式的步骤有:

  1.设函数表达式.

  2.根据已知条件列出有关方程.

  3.解方程.

  4.把求出的k,b值代回到表达式中即可.

  四.课堂练习

  (一)随堂练习P168页

  (题目见教材)

  解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)

  (题目见教材)

  解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。

  五.课时小结

  本节课我们主要学习了根据已知条件,如何求函数的表达式.

  其步骤如下:

  1.设函数表达式;

  2.根据已知条件列出有关k,b的方程;

  3.解方程,求k,b;

  4.把k,b代回表达式中,写出表达式.

  六、布置作业:P169页1、2

  数学教案-确定一次函数的表达式

【一次函数教案】相关文章:

一次函数的图象教案11-23

初中数学一次函数教案01-13

二元一次方程与一次函数的教案03-03

教案中班教案02-23

教案教案及反思04-18

小班教案小班教案03-10

小班教案安全教案03-16

教案幼儿中班教案02-15

小班美术教案羊毛教案06-08