范文资料网>反思报告>教案大全>《三角形内角和教案

三角形内角和教案

时间:2022-03-27 18:32:46 教案大全 我要投稿
  • 相关推荐

三角形内角和教案

  作为一名优秀的教育工作者,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么写教案需要注意哪些问题呢?下面是小编精心整理的三角形内角和教案,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形内角和教案

三角形内角和教案1

  尊敬的各位评委老师:

  大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:

  一、教材分析

  “三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

  二、教学目标

  1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

  2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

  3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

  三、教学重难点

  教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

  教学难点:采用多种途径验证三角形的内角和是180°。

  四、学情分析

  通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

  五、教学法分析

  本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

  六、课前准备

  1、教师准备:多媒体课件、三角形教具。

  2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

  七、教学过程

  (一)、创设情境,激趣导入

  导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

  课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

  (二)、自主探究、合作交流

  1、探索特殊三角形内角和

  拿出自己的一副三角板,同桌之间互相说一说各个角的.度数。

  三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

  90°+45°+45°=180°

  从刚才两个三角形内角和的计算中,你发现了什么?

  2、探索一般三角形的内角和

  一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

  3、汇报交流

  请小组代表汇报方法。

  1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

  没有统一的结果,有没有其他方法?

  2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

  3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

  4)教师课件验证结果。

  请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

  学生回答后教师板书:三角形的内角和是180°

  为什么有的小组用测量的方法不能得到180°?(误差)

  4、验证深化

  质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

  谁能说一说不能画出有两个直角的三角形的原因?

  (三)、应用规律,解决问题:

  揭示规律后,学生要掌握知识,就要通过解答实际问题。

  1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

  第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

  第二关,提高练习,

  ①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

  让学生灵活应用隐含条件来解决问题,进一步提高能力。

  2、小组合作练习,完成相应做一做。

  (四)、课堂总结,效果检测。

  一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

  (五)作业课下继续探究三角形,看你有什么新发现。

  八、板书设计

  通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

三角形内角和教案2

  教学内容

  人教版小学数学第八册第五单元第85页例5

  任务分析

  教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的'特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。

  学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

  教学目标

  1、通过实验、操作、推理归纳出三角形内角和是180°。

  2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

  3、通过拼摆,感受数学的转化思想。

  教学重点

  探究发现和验证“三角形的内角和180度”。

  教学难点

  验证三角形的内角和是180度。

  教学准备

  多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

  教学过程

  一、复习旧知,学习铺垫

  1、一个平角是多少度?等于几个直角?

  2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解规律

  1、说明三角形的三个内角和

  说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

  师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

  板书课题:“三角形的内角和”。

  揭示课题:今天我们一起来探究三角形的内角和有什么规律。

  2、探究三角形的内角和规律

  探究1:量一量,算一算

  以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

  生讨论汇报,并引导学生发现:三角形的内角和接近180°。

  师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

  学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

  探究2:摆一摆,拼一拼

  引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

  生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

  如图:

  (1)

  锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

  (2)

  让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

  (3)

  让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

  引导学生归纳:三角形的内角和是180°。

  是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

  板书:三角形的内角和是180°

  三、巩固练习,应用规律

  1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

  学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

  学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

  (180°-80°)÷2

  =100°÷2

  =50°

  四、拓展练习,深化规律

  1、求出下面各角的度数。

  (1) (2)

  2、判断

  (1)三角形任意两个内角的和大于第三个角。( )

  (2)锐角三角形任意两个内角的和大于直角。( )

  (3)有一个角是60°的等腰三角形不一定是等边三角形。( )

  3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

  ( ) ( )

  五、课堂小结,分享提升

  1、谈谈这节课你有什么收获?

  2、课后思考题

  三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

  板书设计

三角形内角和教案3

  【教学目标】

  1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

  2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】

  探究发现和验证"三角形的内角和为180度"的规律。

  【教学难点】

  理解并掌握三角形的内角和是180度。

  【教具准备】

  PPT课件、三角尺、各类三角形、长方形、正方形。

  【学生准备】

  各类三角形、长方形、正方形、量角器、剪刀等。

  【教学过程】

  口算训练(出示口算题)

  训练学生口算的速度与正确率。

  一、谜语导入

  (出示谜语)

  请画出你猜到的图形。谁来公布谜底?

  同桌互相看一看,你们画出的三角形一样吗?

  谁来说说,你画出的是什么三角形?(学生汇报)

  (1)锐角三角形,(锐角三角形中有几个锐角?)

  (2)直角三角形,(直角三角形中可以有两个直角吗?)

  (3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

  看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)

  看到这个课题,你有什么疑问吗?

  (1)什么是内角?有没有同学知道?

  内:里面,三角形里面的角。

  三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3.

  (2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

  (3)大胆猜测一下,三角形的内角和是多少度呢?

  【设计意图】

  创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样".这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

  二、探究新知

  有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

  1、确定研究范围

  先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

  只研究你画出的那一个三角形,行吗?

  那就随便画,挨个研究吧?(太麻烦了)

  怎么办?请你想个办法吧。

  分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

  2、探究三角形的内角和

  思考一下:你准备用什么方法探究三角形的内角和呢?

  小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

  小组汇报:

  (1)量一量:把三角形三个内角的度数相加。

  直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?

  (2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

  能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

  (3)折一折:把三角形的三个角折下来,拼成了一个平角。

  这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

  总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

  3、演绎推理的方法。

  正方形四个角都是直角,正方形内角和是多少度?

  你能借助正方形创造出三角形吗?(对角折)

  把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

  再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

  这种方法避免了在剪拼过程中操作出现的误差,

  举例验证,你发现了什么?

  通过验证,知道了直角三角形的内角和是180度。

  你能把锐角三角形变成直角三角形吗?

  把锐角三角形沿高对折,分成了两个直角三角形。

  一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)

  通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

  通过刚才的计算,你发现了什么?(锐角三角形内角和180°)

  钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°

  通过验证,你又发现了什么?(钝角三角形内角和180°)

  4、总结

  通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

  5、想一想,下面三角形的内角和是多少度?(小--大)

  你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

  【设计意图】

  为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的'方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

  三、自主练习

  1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

  2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

  3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)

  师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

  4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

  【设计意图】

  练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

  四、课堂总结

  同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

  真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

  课后反思

  《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°".

  本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然".

  为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

  最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

  教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

  1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

  2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

  3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

  教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

三角形内角和教案4

  教学内容:

  p.28、29

  教材简析:

  本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

  教学目标:

  1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

  2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

  3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

  教学准备:

  三角板,量角器、点子图、自制的三种三角形纸片等。

  教学过程:

  一、提出猜想

  老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

  看了这2个算式你有什么猜想?

  (三角形的.三个角加起来等于180度)

  二、验证猜想

  1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

  老师注意巡视和指导。交流各自加得的结果,说说你的发现。

  2、折、拼:学生用自己事先剪好的图形,折一折。

  指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

  继续用该方法折钝角三角形,得到同样的结果。

  直角三角形的折法有不同吗?

  通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

  3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

  在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

  小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

  4、试一试

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,结果相同吗?

  三、完成想想做做

  1、算出下面每个三角形中未知角的度数。

  在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

  指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

  2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

  然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

  3、用一张正方形纸折一折,填一填。

  4、说理:一个直角三角形中最多有几个直角?为什么?

  一个钝角三角形中最多有几个直角?为什么?

  四、布置作业

  第4、5题

三角形内角和教案5

  本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。

  下面就具体谈谈微课的教学设计:

  一、 教学目标

  1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。

  2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。

  3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。

  二、 教学重点和难点

  重点:让学生亲自验证并总结出三角形的内角和是180度的结论

  难点:对不同验证方法的理解和掌握。

  三、 教学过程

  (一)质疑——发现问题,提出问题

  出示学生熟悉的一副三角尺,让学生说说每块三角尺中各个内角的度数。试着计算每块三角尺的三个内角的度数加起来的和是多少度?

  交流:不同三角尺的内角和都是一样的'吗?三角尺的内角和有什么特征?

  引导学生得出三角尺的三个内角的度数和是180度。

  提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)

  你有什么办法验证这一结论呢?(动手操作,寻找答案)

  方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)

  方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。

  启发:直角三角形的内角和是180度,这一结论让你联想到了什么?你能提出什么新的数学问题呢?

  引导:从直角三角形的内角和联想到所有三角形的内角和,提出问题:所有三角形的内角和都是180度吗?

  (二)探究——分析问题,解决问题

  出示三个三角形:直角三角形、锐角三角形和钝角三角形。

  引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。

  提问:你有什么办法来验证这一猜想呢?

  拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。

  方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。

  引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。

  方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。

  方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。

  方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。

  (三)归纳——获得结论

  交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?

  总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。

  (四)拓展——巩固练习

  1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?

  2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?

三角形内角和教案6

  探索三角形内角和的度数以及已知两个角度数求第三个角度数。

  教学目标:

  1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

  2、已知三角形两个角的度数,会求第三个角的度数。

  3、培养学生动手实践,动脑思考的习惯。

  教学重点:

  了解三角形三个内角的度数。

  教学难点:

  理解三角形三个内角大小的关系。

  教具学具准备:

  课件三角形若干量角器剪刀。

  教材与学生

  教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

  学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

  教学过程:

  一、呈现真实状态。

  师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

  学生各抒己见。

  二、提出问题:

  师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

  (1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

  (2)组内交流。

  (3)全班交流。由小组汇报测出结果(三角形内角和)

  (4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

  三。自主探索、研究问题、归纳总结:

  师引导提问:三角形的内角和会不会就是180呢?

  (一)组内探索:

  (1)以小组为单位探索更好的办法。

  (2)以小组为单位边展示边汇报探索的过程与发现的结果。

  (有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

  (3)把你没有想到的方法动手做一次

  (使学生更直观地理解三角形的内角和是180的证明过程)

  (4)根据学生的反馈情况教师进行操作演示。

  (二)教师演示

  撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示

  2.师:这三个内角放在一起你有什么发现?

  生:发现三个内角拼成一个平角。

  师:平角是多少度呢?说明什么?

  生:180?说明三个内角和刚好等于180。

  师:这种方法是不是适用各种三角形呢?

  3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

  进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

  折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

  你们也来试一试好吗?

  在学生完成这一实践后肯定这一发现

  三角形三个内角和等于180?

  :充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

  四。巩固练习,知识升华。

  1.完成课本第28页的“试一试”第三题。

  2.想一想:钝角三角形最多有几个钝角?为什么?

  锐角三角形中的两个内角和能小于90吗?

  3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

  试一试,看谁算得快。

  师:谁来说说自己的计算过程?

  角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

  生:它们的内角和都是 180 度。

  师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

  [回答可能有二]:

  (一种全部说是:)

  师:请问,你们是怎么想的,为什么这么认为?

  生: ……

  师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

  (一种有一部分同学说是,有一部分同学说不是:)

  师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

  (二)动手操作,探究新知

  师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

  生:我准备用量的方法。

  师:然后呢?

  生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

  师:说的真不错,还有没有其它的方法?

  生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

  生:……

  (如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

  师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

  开始吧!(学生研究,师巡回指导)预设时间:5 分钟

  师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

  师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

  ( 预设: 如果第一类同学说的是量的方法)

  师:你是用什么来研究的?

  生:量角器。

  师: 那请你说一下你度量的结果好吗?

  ( 生汇报度量结果)

  师: 刚才有的同学测量的结果是180 度,有的同学测量的'结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

  生:180 度。

  师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

  生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

  师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

  (师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

  师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?

  生:我们还用了折的方法(生介绍方法)

  师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

  (师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

  生:是个平角。180 度。

  师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

  师:请这位同学来说给大家听听吧!

  生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

  师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

  生 1 :量的不准。

  生 2 :有的量角器有误差。

  师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

  师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

  生:三角形的内角和是180 度。(师板书)

  师:把你们伟大的发现读一读吧!

  (三)拓展应用,深化认识

  师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

  师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

  (生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

  师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

  师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

  师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

  师:好,请看大屏幕!

  (出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

  生答后,师提问:你是怎样想的?

  生陈述后,师鼓励:说的真好!

  出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

  (出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

  师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

  (预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

  师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

  师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

  师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

  师:好,下课!同学们再见!

三角形内角和教案7

  【设计理念】

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

  【学习目标】

  1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

  2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

  3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  【教学重点】

  探索和发现“三角形的内角和是180°”。

  【教学难点】

  运用三角形的内角和解决实际问题。

  【教学准备】

  教师:多媒体课件、剪好的不同类型的三角形。

  学生:量角器、剪刀、剪好的不同类型的三角形。

  【教学过程】

  一、创设情景,引出问题

  1、猜谜语。

  师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。

  师:打一几何图形。猜猜看!

  学生猜谜语。

  根据学生的.回答,课件出示谜底。

  师:真是三角形,同学们的反应真快!

  2、复习三角形的内容。

  其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

  指名学生回答。

  (当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

  3、引出课题。

  师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

  (板书课题:三角形的内角和)

  二、探究新知

  1、讨论、交流验证知识的方法。

  师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

  学生汇报:①用量的方法;②用拼的方法;③用折的方法...

  2、操作验证。

  师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

  选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

  3、学生汇报。

  师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

  学生汇报,教师适时板书。

  ①用量的方法:

  指名学生汇报度量的结果,教师板书。(指两名学生汇报)

  教师白板演示测量方法,并计算和板书出结果。

  教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

  师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

  ②用拼的方法

  a、学生汇报拼的方法并上台演示。

  我这里也有一个钝角三角形,请两名同学上台演示。

  b、请大家四人小组合作,用他的方法验证其它三角形。

  c、展示学生作品。

  d、师课件展示。

  师:我们用量、拼得到了180度,还有什么方法?

  ③用折的方法

  师:还想向同学们请同学们看一看他是怎么折的(课件演示)。

  师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

  教师根据学生板书:(任意)三角形的内角和是180度。

  ④数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

  三、巩固练习

  数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

  1、课件出示:我是小判官(对的打“√”错的“×”。)

  强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

  教师:为什么不是360°?学生回答。

  2、接下来我要奖励你们一个游戏:《帮角找朋友》

  3、求未知角的度数。

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  ①课件出示第一个三角形,学生尝试独立完成,教师巡视。

  教师:刚才,我们利用了三角形的什么?

  ②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

  a、我三边相等;b、我是等腰三角形,我的顶角是96°。c、我有一个锐角是40°。

  教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

  四、拓展延伸

  师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

  接着让学生尝试求5边形和6边形的内角和。

  小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

  五、课堂总结。

  师:这节课你有什么收获?

  学生自由发言。

  师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

  同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

  六、作业布置

  完成教材练习十六的第1、3题。

  七、板书设计:

  (任意)三角形的内角和是180°

  ∠1+∠2+∠3=180°

  度量、剪拼、折拼

三角形内角和教案8

  (一)教材的地位和作用

  《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。

  (二)教学目标

  基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1。通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

  2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。

  3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

  (三)教学重,难点

  因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

  二、说教法,学法

  本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

  因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。

  三,说教学过程

  我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

  引入

  呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

  【设计意图】

  让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现"。

  猜测

  提出问题:长方形内角和是360°,那么三角形内角和是多少呢

  【设计意图】

  引导学生提出合理猜测:三角形的内角和是180°。

  (三)验证

  (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

  (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

  (3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

  (4)画:根据长方形的内角和来验证三角形内角和是180°。

  一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

  【设计意图】

  利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的`创造性思维得到了充分发挥。

  深化

  质疑: 大小不同的三角形, 它们的内角和会是一样吗

  观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)

  结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

  实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

  结论:活动角就是一个平角180°, 另外两个角都是0°。

  【设计意图】

  小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。

  对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

  (五)应用

  1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。

  2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

  3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

  (2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

  4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

  【设计意图】

  习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

三角形内角和教案9

  教学目标

  ⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

  ⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

  ⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

  教学重点:检验三角形的内角和是180°。

  教学难点:引导学生通过实验探究得出三角形的内角和是180度。

  教学环节:问题情境与

  教师活动:学生活动媒体应用设计意图

  目标达成

  导入新课

  一、复习旧知,导入新课。

  1、复习三角形分类的知识。

  师出示三角形,生快速说出它的名称。

  2、什么是三角形的内角?

  我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

  什么是三角形的内角和?

  三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

  3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

  由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系

  二、动手操作,探究新知

  1、出示三角板,猜一猜。

  师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

  把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  我们得想个办法验证三角形的.内角和是多少?可以用什么方法验证呢?

  3.学生测量

  4.汇报的测量结果

  除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

  5、巩固知识。

  一个三角形中能不能有两个直角?能不能有2个钝角?

  环节

  三、应用所学,解决问题。

  1、基础练习(课本第68页做一做)

  在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、判断题

  (1)大三角形的内角和大于180度。()

  (2)三角形的内角和可能是180度。()

  (3)一个三角形中最多只能有一个直角。()

  (4)三角形的三个内角分别可能是30度,60度,70度。()

  3、求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

  四、总结:这节课你有什么收获?

三角形内角和教案10

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的`和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

三角形内角和教案11

  教学内容:

  人教版义务教育课程标准试验教科书数学四年级下册第67页。

  设计理念:

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

  教材分析:

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的`动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。

  学情分析:

  学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

  教学目标:

  1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。

  2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。

  3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识

三角形内角和教案12

  学习目标:

  (1) 知识与技能 :

  掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

  (2) 过程与方法 :

  通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

  通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

  (3)情感态度与价值观:

  通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

  一.自主预习

  二.回顾课本

  1、三角形的内角和是多少度?你是怎样知道的?

  2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的'语言写出这一证明过程吗?与同伴进行交流。

  3、回忆证明一个命题的步骤

  ①画图

  ②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

  ③分析、探究证明方法。

  4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

  ①平角,②两平行线间的同旁内角。

  5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

  ① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

  ② 如图1,延长BC,过C作CE∥AB

  ③ 如图2,过A作DE∥AB

  ④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

  三、巩固练习

  四、学习小结:

  (回顾一下这一节所学的,看看你学会了吗?)

  五、达标检测:

  略

  六、布置作业

三角形内角和教案13

  教学目标

  通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

  教学重难点

  三角形的内角和

  课前准备

  电脑课件、学具卡片

  教学活动

  一、计算三角尺三个内角的和。

  出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

  引导学生说出90度、60度、30度。

  出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

  提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

  学生计算后指名回答。

  师:三角尺三个角的和是180度。

  二、自主探索,解决问题

  提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上

  任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

  学生小组活动,教师了解学生情况,个别同学加以辅导。

  全班交流:让学生分别说出三个角的度数以及它们的`和。

  提问:你发现了什么?

  :任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

  三、试一试

  要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

  教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以

  计算的结果为准。

  四、巩固提高

  完成想想做做的题目。

  第1题

  学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。

  第2题

  指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。

  第3题

  通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。

  第4、5、6

  引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

三角形内角和教案14

  教学目标:

  1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

  2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

  3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

  教学重点:

  探索发现三角形内角和等于180并能应用。

  教学难点:

  三角形内角和是180的探索和验证。

  教学过程:

  一、创设情境,提出问题

  师:大家喜欢猜谜语吗?

  生:喜欢。

  师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

  (打一几何图形))

  生:三角形。

  师:三角形中都有哪些学问?

  生:三角形有三条边,三个角,具有稳定性。

  生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

  生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

  生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

  生:三角形的内有和是180。

  生:(一脸疑惑)

  师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?

  生:每个三角形的内角和都是180吗?

  (根据学生的问题,在三角形的内角和是180后面加上一个?)

  二、自主探索,实践验证

  1、理解内角 师:什么是内角?

  生:我认为三角形的内角就是指三角形的三个角。

  师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

  2、理解内角和。

  师:那三角形的内角和又是指什么?

  生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

  师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

  3、实践验证

  师:每个三角形的内角和都是180吗?用什么方法来验证呢?

  生:量一量每个角的度数,然后加起来看看是不是180。

  师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

  师:谁愿意把你的劳动成果和大家分享一下?

  生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

  师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

  生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

  师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

  生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

  师:你发现了什么?

  生:有的三角形的`内角和是180,而有的三角形的内角和却不是180。

  师:看来三角形的内角和不一定是180。

  生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

  生:都接近180就能说一定是180吗?

  师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

  (学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

  师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

  生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

  师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?

  生:我们小组也有折的直角三角形,钝角三角形。

  (其它的成员展示不同的三角形)

  师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

  师:哪个小组和他们的方法不一样?

  生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

  师:这个小组的方法简便,易操作,很好。

  生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

  4、小结

  师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?

  生:没有。

  师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

  三、巩固应用,加深理解

  1、说一说每个三角形的内角和是多少度

  师:(出示一个大三角形)这个大三角形的内角和是多少度?

  生: 180

  师:(出示一个小三角形)这个小三角形的内角和是多少度?

  生:180

  师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

  生:180

  师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?

  生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

  师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

  生:180

  2、求下面各角的度数

  师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

  (出)

  生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三个三角形中,用180-20-45,B=115。

  3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

  生:等腰三角形的两个底角相等,所以用180-70-70 4、

  师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

  在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?

  生:用量角器量一量

  师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

  生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56

  师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

  四、回顾总结,拓展延伸

  师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

  生:我知道了三角形的内角和是180。

  生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

  生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

  生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

  师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

  师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

  生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

  生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

  师:我们学习知识,必须知其然并知其所以然。

  师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

三角形内角和教案15

  教材分析

  教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。

  教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。

  三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

  另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。

  学情分析

  学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。

  要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。

  教学目标

  1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

  3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

  教学重点和难点

  教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。

  教学难点:让学生经历探索和发现三角形的内角和是180°的过程。

  教学过程:

  (一)、激趣导入:

  1、认识三角形内角

  我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  (三角形是由三条线段围成的图形,三角形有三个角,…。)

  请看屏幕(课件演示三条线段围成三角形的过程)。

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角

  形的内角。(这里,有必要向学生直观介绍“内角”。)

  2、设疑激趣

  现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)

  同学们,请你们给评评理:是这样吗?

  现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的.。那么到底谁说得对呢?

  这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)

  (二)、动手操作,探究新知

  1、探究特殊三角形的内角和

  师拿出两个三角板,问:它们是什么三角形?

  (直角三角形)

  请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

  (由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)

  从刚才两个三角形内角和的计算中,你们发现了什么?

  (这两个三角形的内角和都是180°)。

  这两个三角形都是直角三角形,并且是特殊的三角形。

  2、探究一般三角形内角和

  (1).猜一猜。

  猜一猜其它三角形的内角和是多少度呢?(可能是180°)

  (2).操作、验证一般三角形内角和是180°。

  所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  (可以先量出每个内角的度数,再加起来。)

  测量计算,是吗?那就请四人小组共同计算吧!

  老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:

  (3)小组汇报结果。

  请各小组汇报探究结果

  提问:你们发现了什么?

  小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

  3继续探究

  (1)动手操作,验证猜测。

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?

  (先小组讨论,再汇报方法)

  大家的办法都很好,请你们小组合作,动手操作。

  (2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。

  学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

  我们可以得出一个怎样的结论?(三角形的内角和是180°)

  引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。

  5、辨析概念,透彻理解。

  (出示一个大三角形)它的内角和是多少度?

  (出示一个很小的三角形)它的内角和是多少度?

  一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)

  把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)

  这两道题都有两种答案,到底哪个对?为什么?

  (学生个个脸上露出疑问。)

  大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

  经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°

  (三)小结

  刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  (四)、巩固练习,拓展应用

  下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、求三角形中一个未知角的度数。

  (1)在三角形中,已知∠1=85°,∠2=65°,求∠3。

  (2)在三角形中,已知∠1=98°,∠2=49°,求∠3。

  2、判断

  (1)一个三角形的三个内角度数是:90°、75°、25°。()

  (2)一个三角形至少有两个角是锐角。()

  (3)钝角三角形的内角和比锐角三角形的内角和大。()

  (4)直角三角形的两个锐角和等于90°。()

  3、解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  小组的同学讨论一下,看谁能找到最佳方法。

  学生汇报,在图中画上虚线,教师课件演示。

  请同学们自己在练习本上计算。

  (四)、课堂总结

  通过这节课的学习,你有哪些收获?

【三角形内角和教案】相关文章:

《三角形的内角和》教案10-05

《三角形的内角和》教案03-01

《三角形内角和》数学教案12-24

三角形内角和教案7篇05-13

三角形内角和教案5篇05-13

《三角形内角和》数学教案02-13

三角形内角和教案范文8篇05-15

三角形内角和教案汇编五篇05-15

三角形内角和教案汇编6篇05-15